Применение углеродсодержащего сорбента из плодовых оболочек риса для удаления фенола из водных растворов

  • О. Д. Арефьева Институт химии Дальневосточного отделения Российской академии наук, г. Владивосток, Россия; Дальневосточный федеральный университет, г. Владивосток, Россия https://orcid.org/0000-0001-8001-4370
  • А. В. Ковехова Институт химии Дальневосточного отделения Российской академии наук, г. Владивосток, Россия; Дальневосточный федеральный университет, г. Владивосток, Россия https://orcid.org/0000-0001-7179-2736
  • Л. А. Земнухова Институт химии Дальневосточного отделения Российской академии наук, г. Владивосток, Россия
  • Н. П. Моргун Дальневосточный федеральный университет, г. Владивосток, Россия
Ключевые слова: фенол; сорбция; углеродсодержащий сорбент; шелуха риса.

Аннотация

В работе исследован углеродсодержащий материал как сорбент для удаления фенола из водных растворов, который получали гидролизом рисовой шелухи гидроксидом натрия с последующей карбонизацией твердого остатка при 400°С в условиях недостатка кислорода. Образец имеет сложную слоисто-волокнистую структуру с порами разной формы и находится в рентгеноаморфном состоянии. Кинетические кривые показали, что сорбционное равновесие на ~ 85% достигается через 60 мин после начала сорбции, и подчиняется в большей степени модели псевдовторого порядка (R2>0,9), что указывает на взаимодействие между сорбатом (фенолом) и функциональными группами сорбента. Изотерма адсорбции лучше всего описывается уравнением Дубинина-Астахова и относятся к физической адсорбции, которая определяется его пористой структурой.

Литература

Chachina, S.B. (2011). The Use of the Higher Water Plants: Vallisneria spirali, eichornia crassipes, lemna minor, for additional cleaning of sewage at "Gaspromneft Refinery". Omsk Scientific Bulletin, 1(104), 196–200.

Belyaeva, O.V., Golubeva, N.S., Velikanova, E.S. & Gora N.V. (2012). Use of New Carbon Adsorbents for Water Cleaning From Phenol. Food Processing: Techniques and Technology, 1(24), 143–146.

Korosteleva, A.V. (2011). A method of wastewater treatment from phenols. Izvestiya Penzenskogo gosudarstvennogo pedagogicheskogo universiteta im. V. G. Belinskogo = News of Penza State Pedagogical University named after V. G. Belinsky, 25. 585–589 (in Russ).

Maslov, N.V., Movchan, N.I. & Trutneva, V.A. (2015). Application of statistical methods for monitoring the phenol content in the surface waters of lakes of the Kaban ecosystem. Vestnik Tekhnologicheskogo Universiteta = Bulletin of the Technological University, 18(6). 179–184 (in Russ).

Nikolaeva, N.A., Nogovitsyn, D.D., Salova, T.A. & Pinigin D.D. (2014). Study of Qualitative State of Water of the Timpton River Basin in Connection With Engineering Of The Kankunskaya HPP. Fundamental'nye issledovaniya = Fundamental research, 9(10). 2241–2245 (in Russ).

Boronina, L.V. & Abuova, G.B. (2011). Water resources of the Astrakhan region – sources of water supply. Estestvennye nauki = Natural sciences, 3(36). 32–39 (in Russ).

Potenko E.I., Zhukova N.I. & Arefieva O.D. (2018). Phenolic Compounds in Surface and Drinking Water Of Primorsky Krai. Vestnik of the Far East Branch of the Russian Academy of Sciences, 5. 120–123.

Smirnova, V.S., Khudorozhkova ,S.A. & Ruchkinova, O.I. (2017). Dephenolization of highly concentrated wastewater from industrial enterprises. Vestnik Permskogo Nacional'nogo Issledovatel'skogo Politekhnicheskogo Universiteta. Stroitel'stvo i arhitektura = Bulletin of Perm National Research Polytechnic University. Construction and architecture, 8(2). 52–63 (in Russ).

Kaleta, J., Papciak, D. & Puszkarewicz, A. (2013). Assessment of usability of bentonite clays for removing phenol from water solutions. Rocznik Ochrona Srodowiska, 15(1). 2352–2368.

Mirmohamadsadeghi, S., Kaghazchi, T., Soleimani, М. & Asasian N. (2012). An efficient method for clay modification and its application for phenol removal from wastewater. Applied Clay Science, 59(60). 8–12. https://doi.org/10.1016/j.clay.2012.02.016

Chao, L., Hong, Z., Li, Z. & Gang Z. (2010). Study on adsorption characteristic of macroporou resin to phenol in wastewater. Canadian Journal of Chemical Engineering, 88(3). 417–424. https://doi.org/10.1002/cjce.20289

Lin, S., Juang, R. (2009). Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. Journal of Environmental Management. 90(3). 1336–1349. https://doi.org/10.1016/j.jenvman.2008.09.003

Obedkova, O.A. & Alykova, T.V. (2008). Sorption removal of phenol from water. Geologiya, geografiya i global'naya energiya = Geology, geography and global energy, 2(29). 78–81 (in Russ).

Sirotkina, E.E., Pogadaeva, N.I. & Fufaeva M.S. (2010). Cryogel is a sorbent based on polyvinyl alcohol and iron-containing sediment for removing oil and phenol from water. Izvestiya Tomskogo politekhnicheskogo universiteta = News of Tomsk Polytechnic University, 317(3). 49–53. (in Russ)

Gaber, D.A., Haija, A.H., Eskhan, A, Banat, F. (2017). Graphene as an efficient and reusable adsorbent compared to activated carbons for the removal of phenol from aqueous solutions. Water Air and Soil Pollution, 228(9). 320. https://doi.org/10.1007/s11270-017-3499-x

Sahoo, P., Das, R., & Das, N. (2017). Adsorptive removal of phenol from aqueous solutions and coking wastewater by coke produced from hard and soft coking coals. Desalination and Water Treatment, 86. 139–149. https://doi.org/10.5004/dwt.2017.21309

Sivakova, L.G. (2007). Kinetics of phenol sorption on carbon material. Bulletin of the Kuzbass State Technical University, 2(60). 94–96. (in Russ)

Eremina, A.O., Golovina, V.V., Ugai, M.Yu. & Rudkovsky A.V. (2004). Carbon adsorbents from wood waste in the process of purification of phenol-containing waters. Khimija Rastitel'nogo Syr'ja, 2. 67–71. (in Russ)

Chukhrina, V.V., & Zolotareva, N.V. (2014). Studying of the Adsorptive Ability of a Carbon-Mineral Sorbent in Relation to Phenol. Uspekhi v himii i himicheskoj tekhnologii = Advances in chemistry and chemical technology, 28(1(150)). 131–133. (in Russ)

Pajooheshfar, S., & Saeedi, M. (2009). Adsorptive removal of phenol from contaminated water and wastewater by activated carbon, almond, and walnut shells charcoal. Water Environmental Research, 81(6). 641–648. https://doi.org/10.2175/106143008X390780

Ingole, R., & Lataye, D. (2015). Adsorptive removal of phenol from aqueous solution using activated carbon prepared from babul sawdust . J. Hazard Toxic Radioact. Waste. 19(4). 04015002. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000271

Garba, A., Nasri, N.S., Basri, H., Ismail, R., Majid, Z.A., Hamza, U., & Mohammed, J. (2016). Adsorptive removal of phenol from aqueous solution on a modified palm shell-based carbon: fixed-bed adsorption studies. Desalination and Water Treatment, 57(60). 29488–29499. https://doi.org/10.1080/19443994.2016.1184187

Rahdar, S., Khaksefidi, R., Alipour, V., Saeidi, M., Narooie, R.M., Salimi, A., Biglari, H., Baneshi, M.М., & Ahamadabadi M. (2016). Phenol adsorptive by cumin straw ash from aqueous environments. IIOAB Journal. 7(2). 536–541.

Kilic, M., Apaydin-Varol, E., & Putun, A. (2011). Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: Equilibrium, kinetics and thermodynamics. Journal of Nazardous Materials. 189(1-2). 397–403. https://doi.org/10.1016/j.jhazmat.2011.02.051

Mahvi, A.H., Maleki, A., & Eslami, A. (2004). Potential of rice husk and rice husk ash for phenol removal in aqueous system. American Journal of Applied Sciences, 1(4). 321–326. https://doi.org/10.3844/ajassp.2004.321.326

Ahmaruzzaman, M., & Sharam, D. (2005). Adsorption of phenols from wastewaters. J. Colloid Interface Sci, 287(1). 14–24. https://doi.org/10.1016/j.jcis.2005.01.075

Mbui, D.N., Shiundu, P., Ndonye, R., & Kamau, G.N (2002). Adsorption and detection of some phenolic compounds by rice husk ash of Kenyan origin. Journal of Environmental Monitoring, 4(6). 978–984. https://doi.org/10.1039/B207257M

Grigoraj, O.B., Ivanov, Yu.S., Komissarenkov, A.A. & Smolin A.S. (2011). Gasification of black liquor of sulfate production. Saint-Petersburg : SPbGTURP.

Zemnukhova, L.A., Arefyeva, O.D. & Kovshun A.A. (2011). Composition and purification of waste water from the alkaline hydrolysis of rice shuck. Chemistry for Sustainable Development. 19(5), 509–514.

Zemnukhova, L.A., Tomshich, S.V., Mamontova, V.A., Komandrova, N.A., Fedorishcheva, G.A. & Sergienko, V.I. (2004). Composition and properties of polysaccharides from rice husk. Russian Journal of Applied Chemistry. 77(11), 1883–1887.

Lora, J.H. & Glasser, W.G. (2002). Resent industrial application of lignin: A sustainable alternative to nonrenewable materials. Journal of Polymers and the Environment. 10, 39–48. https://doi.org/10.1023/A:1021070006895

Nghia, N.H., Zenitova, L.A. & Dien L.Q. (2019). Integrated processing of waste from rice production with the simultaneous production of silicon dioxide, lignin and cellulose. Regional Environmental Issues. 2, 5–11. https://doi.org/10.24411/1728-323X-2019-12005

Arefieva, O.D., Sedinkina, E.S., Zemnukhova, L.A. & Smitskih K.V. (2020). Ecological and economic assessment of the integrated rice husk processing scheme. Vestnik of the far east branch of the russian academy of sciences. 6, 91–98. https://doi.org/10.37102/08697698.2020.214.6.011

Arnal, P.M. (2015). Baking sunflower hulls within an aluminum envelope in a common laboratory oven yields charcoal. MethodsX, 2. 198–203. https://doi.org/10.1016/j.mex.2015.03.009

Tannin and lignin : Standard Methods for the Examination of Water and Wastewater (1998). American Public Health Association, American Water Works Association, and Water Pollution Control Federation. 20th Edition. Washington, 5550, 988–992.

Janos, P., Buchtova, H., & Ryznarova, M. (2003). Sorption of dyes from aqueous solutions onto fly ash. Water Research, 37. 4938–4944. https://doi.org/10.1016/j.watres.2003.08.011

Frolov, Yu.G. Course of colloidal chemistry. Surface phenomena and dispersed systems. M.: Chemistry, 1988. 464 p. (in Russ.)

Keltsev, N.V. Fundamentals of adsorption technology. 2nd ed., reprint. and additional M.: Chemistry, 1984. 592 p. (in Russ.)

GOST (State Standard) 6217-74. Crushed active wood coal.

Terentyev, A.P., & Luskina, B.M. (1959). Elementary organic analysis by the method of "wet burning". ZHurnal analiticheskoj himii = Journal of Analytical Chemistry, 1. 112–117. (in Russ)

Soldatkina, L.M. & Sagaidak, E.V. (2010). Kinetics of adsorption of water-soluble dyes on active coals. Himiya i tekhnologiya vody = Chemistry and technology of water, 32(4), 388–398.

Khokhlova, Т.Д., Vlasenko, Е.В., Khryashchikova, D.N., Lanin, S.N. & Smirnov, V.V. (2011). Adsorption and(in Russ.) gas-chromatographic properties of silver-modified silicas. Moscow University Chemistry Bulletin, Series 2: chemistry, 52(2), 102–107.

Romancova, I.V., Burakov, A.E. & Kucherova, A.E. (2014). Research the kinetics of liquid-phase adsorption process of organic substances on hybrid nanostructured carbon sorbents. Izvestiya Samarskogo nauchnogo centra RAN = Proceedings of the Samara Scientific Center of the Russian Academy of Sciences, 16(4(3)), 611–614. (in Russ.)

Gregg, S.J. & Sing, K.S.W. (1982). Adsorption, Surface Area and Porosity: Second Edition. Academic press.

Order of the MPR of the Russian Federation No. 536 "On approval of Criteria for Assigning waste to hazard classes I-V according to the degree of negative impact on the environment". December 4, 2014.

Tarkovskaya, I.A. (1981). Oxidized coal. Kiev: Nauk. dumka. (in Russ.)

Silverstein, R.M., Webster, F.X. & Kiemle, D.J. (2011). Spectrometric Identification of organic compounds: seventh edition. John Wiley & Sons, Inc.

Опубликован
2022-12-11
Как цитировать
Арефьева, О. Д., Ковехова, А. В., Земнухова, Л. А., & Моргун, Н. П. (2022). Применение углеродсодержащего сорбента из плодовых оболочек риса для удаления фенола из водных растворов. Химическая безопасность, 6(2), 132 - 147. https://doi.org/10.25514/CHS.2022.2.23008
Раздел
Технологии ликвидации источников химической опасности