Мицеллярные эффекты димерных катионных ПАВ в реакциях щелочного гидролиза ацилсодержащих субстратов. Роль структуры ПАВ и субстрата. Обзор
Аннотация
Установление природы влияния организованных микрогетерогенных систем (ОМС) на реакционную способность гидроксид-иона в процессах щелочного гидролиза ацилсодержащих субстратов в рамках подхода «структура ПАВ / субстрата – свойство – мицеллярные эффекты» – основа создания высокоэффективных нуклеофильных систем для разложения экотоксикантов, в том числе, фосфорорганических соединений. Кинетические закономерности щелочного гидролиза в микрогетерогенных системах на базе димерных катионных, функционализированных ПАВ и их мономерных аналогов проанализированы с использованием псевдофазной распределительной модели. Максимальный каталитический эффект при переносе процесса из воды в мицеллы детергентов достигает от 10 до 102 раз. Увеличение скорости реакции связано не только с концентрированием реагентов в мицеллярной псевдофазе, но и с изменением нуклеофильности гидроксид-иона, обусловленного характером микроокружения. Мицеллярные эффекты ПАВ зависят от гидрофобности субстрата и детергента (длины алкильного «хвоста», природы полярной группы и мостикового звена). Введение гидроксильной группы в мостиковое звено создает дополнительные возможности для межмолекулярных взаимодействий и обеспечивает рост наблюдаемых скоростей реакции по сравнению с мономерными детергентами и димерными ПАВ с метиленовыми мостиковыми фрагментами.
Литература
Sharma, R., Kamal, A., Abdinejad, M., Mahajan, R., & Kraatz, H. (2017). Advances in the synthesis, molecular architectures and potential applications of Gemini surfactants. Adv. Colloid Interface Sci., 248, 35–68. https://doi.org/10.1016/j.cis.2017.07.032.
Samiey, B., Cheng, C.-H., & Wu, J. (2014). Review Article Effects of Surfactants on the Rate of Chemical reactions. J. Chem., 2014, Art ID 908476, 14 p. https://doi.org/10.1155/2014/908476.
Diez-Castellnou, M., Martinez, A., & Mancin, F. (2017). Phosphate Ester Hydrolysis: The Path From Mechanistic Investigation to the Realization of Artificial Enzymes. Adv. Phys. Org. Chem., 51,129–186. https://doi.org/10.1016/BS.APOC.2017.09.003.
Kamboj, R., Singh, S., Bhadani, A., Kataria, H., & Kaur, G. (2012). Gemini Imidazolium Surfactants: Synthesis and Their Biophysiochemical Study. Langmuir, 28, 11969–11978. https://doi.org/10.1021/la300920p.
Mondal, M.H., Roy, A., Malik, S., Ghosh, A., & Saha, B. (2015). Review on chemically bonded geminis with cationic heads: second-generation interfactants. Res. Chem. Intermed., 42(3), 1913–1928. https://doi.org/10.1007/s11164-015-2125-z.
Kushan, P., Mistry, B. Jana, S., Gupta, S., Devkar, R.V., & Kumar, S. (2015). Physico-biochemical studies on cationic gemini surfactants: Role of spacer. J. Mol. Liq., 206, 19–28. https://doi.org/10.1016/j.molliq.2015.01.055.
Deraedt, C., & Didier, A. (2016). Supramolecular nanoreactors for catalysis. Coord. Chem. Rev., 324, 106–122. https://doi.org/10.1016/j.ccr.2016.07.007.
Bhadani, T., Misono, S., Singh, K., Sakai, H., Sakai, M., & Abe, M. (2016). Structural diversity, physicochemical properties and application of imidazolium surfactants: Recent advances. Adv. Colloid Interface Sci., 231(12), 36–58. https://doi.org/10.1016/j.cis.2016.03.005.
Zana, R. (2002). Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Adv. Colloid Interface Sci. 97(1-3), 205–253. https://doi.org/10.1016/s0001-8686(01)00069-0.
Zhuang, L.-H., Yu, K.-H., Wang, G.-W., & Yao, C. (2013). Synthesis and properties of novel ester-containing gemini imidazolium surfactants. J. Coll. Interface Sci., 408, 94–100. https://doi.org/10.1016/j.jcis.2013.07.029.
Mirgorodskaya, A.V., Yackevich, E.I., Gabdrakhmanov, D.R., Lukashenko, S.S., Zuev, Yu.F., & Zakharova, L.Ya. (2016). Self-organization and lipoplex formation of cationic surfactants with morpolinium head group. J. Mol. Liq. 220, 992–998. https://doi.org/10.1016/j.molliq.2016.05.010.
Ding, Y.-Sh., Zha, M., Zhang, J., & Wang, S.-S. (2007). Synthesis, characterization and properties of geminal imidazolium ionic liquids. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 298(3), 201–205. https://doi.org/10.1016/j.colsurfa.2006.10.063.
Ren, C., Wang, F., Zhang, Z., Nie, H., Li, N., & Cui, M. (2015) Synthesis, surface activity and aggregation behavior of Gemini imidazolium surfactants 1,3-bis(3-alkylimidazolium-1-yl) propane bromide. J. Colloids and Surfaces A: Physicochemical and Engineering Aspects., 467, 1–8. https://doi.org/10.1016/j.colsurfa.2014.11.031.
Bhadani, A., Kataria, H., & Sukhprit, S. (2011). Synthesis, characterization and comparative evaluation of phenoxy ring containing long chain Gemini imidazolium and pyridinium amphiphiles. J. Coll. Interface Sci., 361(1), 33–41. https://doi.org/10.1016/j.jcis.2011.05.023.
Al-Ayed, A.S., Ali, M.S., Al-Lohedan, H.A., Al-Sulaim, A.M., & Issa, Z.A. (2011). Effect of alkyl chain length, head group and nature of the surfactant on the hydrolysis of 1,3 benzoxazine-2,4-dione and its derivatives. J. Coll. Interface Sci., 361(1), 205–211. https://doi.org/10.1016/j.jcis.2011.05.005.
Pisárčik, M., Polakovičová, M., Markuliak, M., Lukáč, M., & Devínsky, F. (2019). Self-Assembly Properties of Cationic Gemini Surfactants with Biodegradable Groups in the Spacer. Molecules, 24, 1–13. https://doi.org/10.3390/molecules24081481.
Pisarcik, M., Polakovicova, M., Pupak, M., Deninsky, F., & Lacko, I. (2009). Biodegradable Gemini surfactants. Correlation of area per surfactant molecule with surfactant structure. J. Colloid Interface Sci., 329(1), 153–162. https://doi.org/10.1016/j.jcic.2008.10.016.
Tehrani-Bagha, A.R., Oskarsson, H., Ginkel, C.G., & Holmberg, K. (2007). Cationic ester-containing gemini surfactants: chemical hydrolysis and biodegradation. J. Colloid Interface Sci., 312(2), 444–452. https://doi.org/10.1016/j.jcis.2007.03.044.
Tehrani-Bagha, A.R., Holmberg, K., Ginkel, C.G., & Kean, M. (2015). Cationic gemini surfactants with cleavable spacer: chemical hydrolysis, biodegradation, and toxicity. J. Colloid Interface Sci., 449(2), 72–79. https://doi.org/10.1016/j.jcis.2014.09.072.
Ghosh, K.K., Kolay, S., Bal, S., Satnami, M.L., Quagliotto, P., & Dafonte, P.R. (2008). Effect of cationic gemini surfactants on the hydrolysis of carboxylate and phosphate esters using hydroxamate ions. Colloid Polym. Sci., 286(3), 293–303. https://doi.org/10.1007/s00396-007-1769-7.
Kumar, B., Tikariha, D., Sathami, M,L., Barbero, N., Quagliotto, P., & Ghosh, K.K. (2014). Catalytic hydrolysis of phosphodiesters by nucleophilic ions in gemini micellar media. J. Phys. Org. Chem., 27, 613–621. https://doi.org/10.1002/poc.3308.
Pavez, P., Oliva, G., & Millán, D. (2016). Green Solvents as a Promising Approach to Degradation of Organophosphorate Pesticides ACS Sustain. Chem. & Eng., 4(12), 7023–7031. https://doi.org/10.1021/acssuschemeng.6b01923.
Wanderlind, E.H., Orth, E.S., Medeiros, M. Santos, D. M. P. O., Westphal, E., Gallardo, H., Fiedler, H. D., & Nome, F. (2014) Aqueous Micelles as Catalytic Nanoreactors for Dephosphorylation Reactions. J. Braz. Chem. Soc., 25 (12), 2385–2391. https://doi.org/10.5935/0103-5053.20140258.
Simanenko, Yu.S., Popov, A.F., Prokop'eva, T.M., Karpichev, E.A., Savelova, V.A., Suprun, I.P., & Bunton, C.A. (2002). Inorganic Anionic Oxygen-Containing α-Nucleophiles - Effective Acyl Group Acceptors: Hydroxylamine Ranks First among the α-Nucleophile Series. Russ. J. Org. Chem., 38(9), 1286–1298. (in Russ) https://doi.org/10.1023/A:1021699628721.
Simanenko, Yu.S., Popov, A.F., Prokop'eva, T.M., Karpichev, E.A., Belousova, I.A., & Savelova, V.A. (2002) Micellar Effects of Cationic Detergents in the Decomposition of Ecotoxic Substrates by Hydroxide Ion. Theor. Exper. Chem., 38, 242–249. (in Russ) https://doi.org/10.1023/A:1020515831658.
Zubareva, T.M., Belousova, I.A., Prokop’eva, T.M., Gaidash, T.S., Razumova, N.G., Panchenko, B.V., & Mikhailov, V.A. (2020). Reactivity of Inorganic α-Nucleophiles in Acyl Group Transfer Processes in Water and Surfactant Micelles: II. Alkaline Hydrolysis of Ethyl 4-Nitrophenyl Ethylphosphonate in Systems Based on Dimeric Cationic Surfactants. Russian J. Org. Chem., 56(1), 53–58. (in Russ) https://doi.org/1134/S1070428020010091.
Mirgorodskaya, A.B., Valeeva, F.G., Lukashenko, S.S., Kushnazarova, R.A., Prokop’eva, T.M., Zubareva, T.M., Mikhailov, V.A., & Zakharova, L.Ya. (2018). Dicationic hydroxylic surfactants: Aggregation behavior, guest-host interaction and catalytic effect. J. Mol. Liq., 250, 229–235. https://doi.org/10.1016/j.molliq.2017.11.175.
Zubareva, T.M., Anikeev, A.V., Karpichev, E.A., Red'ko, A.N., Prokop'eva, T.M., & Popov, A.F. (2012). Cleavable dicationic surfactant micellar system for the decomposition of organophosphorus compounds. Theor. Exp. Chem., 47(6), 377–383. (in Russ) https://doi.org/10.1007/s11237-012-9230-5.
Аникеев А.В., Прокопьева Т.М., Зубарева Т.М., Попов А.Ф. (2010). Некоторые физико-химические характеристики димерных детергентов, синтезированных на основе третичных диаминов. Укр. хим. журн., 76(5-6), 51–55.
Zubareva, T.M., Anikeev, A.V., Karpichev, E.A., Kapitanov, I.V., Prokop'eva, T.M., & Popov, A.F. (2011) Catalysis of the alkaline hydrolysis of 4-nitrophenyl diethyl phosphonate by cationic dimeric surfactant micelles. Theor. Experim. Chem., 47(2), 108–114. (in Russ) https://doi.org/10.1007/s11237-011-9190-1.
Anikeev, A.V., Zubareva, T.M., Belousova, I.A., Prokop'eva, T.M., & Popov, A.F. (2010). Aggregative Properties and Electrochemical Characteristics of the Dimeric Detergents Synthesized from Diepoxides. Him. Fiz. Tehnol. Poverhni, 1(4), 450–456 (in Russ).
Капитанов И.В., Прокопьева Т.М., Садовский Ю.С., Соломойченко Т.Н., Туровская М.К., Пискунова Ж.П., Разумова Н.Г., Попов А.Ф. (2014). Мицеллярные эффекты димерных имидазолиевых ПАВ в процессах переноса ацильных групп на гидроксид- и гидропероксид- ионы. Укр. хим. журн., 80(1), 30 37.
Zubareva, T.M., Gaidash, T.C., Razumova, N.G., Panchenko, B.V. Prokop'eva, T.M., & Mikhailov, V.A. (2018) Micellar effects of dimeric cationic surface active compounds in alkaline hydrolysis of 4-nitrophenyl esters of diethyl phosphonic, diethyl phosphoric and toluenesuolfonic acids. Bulletin of Donetsk National University. Series A. Natural Sciences, 2, 72–79 (in Russ).
Zubareva, T.M., Belousova, I. A., Gaidash, T.S., Razumova, N.G., Prokop'eva, T.M., & Mikhailov V.A. (2019) Acid-base properties of phenols in micelles of surface active compounds. Bulletin of Donetsk National University. Series A. Natural Sciences, 3-4, 107–113 (in Russ).
Zubareva, T.M., Belousova, I. A., Gaidash, T.C., Razumova, N.G., Panchenko, B.V. Prokop'eva, T.M., & Mikhailov, V.A. (2020) Effects of the nature of leaving group and the structure of surface active compounds on alkaline hydrolysis of aryltoluene sulphonates. Bulletin of Donetsk National University. Series A. Natural Sciences, 1, 63–71 (in Russ).
Khilko, S.L., Kotenko, A.A., Prokop'eva, Т.М., & Mikhailov, V.A. (2020) The effect of hydrocarbon radical length on the tensiometric characteristics of dicationic imidazolium oxym at liquid-gas interface. Bulletin of Donetsk National University. Series A. Natural Sciences, 1, 78 83 (in Russ).
Voloshina, A.D., Gumerova, S.K., Sapunova, А.S., Kulik, N.V., Mirgorodskaya, A.B., Kotenko, A.A., Prokop'eva, T.M., Mikhailov, V.A., Zakharova, L.Ya., & Sinyashin, O.G. (2020). The structure – Activity correlation in the family of dicationic imidazolium surfactants: Antimicrobial properties and cytotoxic effect. Biochimica et Biophysica Acta (BBA) - General Subjects, 1864(12), 129728. https://doi.org/10.1016/j.bbagen.2020.129728.
Belousova, I.A., Zubareva, T.M., Gaidash, T.S., Razumova, N.G., Turovskaya, M.K., Panchenko, B.V., Prokop'eva, T.M., & Mikhailov, V.A. (2021) Reactivity of inorganic α nucleophiles in acyl transfer processes in water and surfactant micelles: III. Systems based on dimeric cationic imidazolium surfactants in alkaline hydrolysis of ethyl 4-nitrophenyl ethylphosphonate. Russ. J. Org. Chem., 57 (3), 338–346 (in Russ). https://doi.org/10.1134/S1070428021030039.
Zubareva T.M., Belousova I.A., Razumova N.G., Panchenko B.V., Prokop'eva T.M., & Mikhailov V.A. (2021) Influence of the nature of polar head group and spacer unit of dimeric cationic surfactants on micellar effects in alkaline hydrolysis of 4-nitrophenyl diethylphosphonate. Bulletin of Donetsk National University. Series A. Natural Sciences, 1, 52–61 (in Russ).
Belousova, I.A., Zubareva, T.M., Razumova, N.G., Gaidash, T.S., Prokop'eva, T.M., & Mikhailov, V.A. (2021) Hydroxyl-functionalized dicationic surfactant in base catalyzed hydrolysis of 4 nitrophenyldietylphosphonate. Bulletin of Donetsk National University. Series A. Natural Sciences, 4, 44–53 (in Russ).
Amerhanova, S., Voloshina, A., Sapunova, A., Lyubina, F., Mikhailov, V., Mirgorodskaya, A., & Zakharova, L. (2021). Mitochondria-targeted Dicationic Imidazolium Surfactants. 55TH ANNUAL SCIENTIFIC MEETING – Online Event June 9th–11th, Europ. J. Chem. Invest., 51, Supplement 1, June 2021. P. 35.
Prokop'eva, T.M., Mirgorodskaya, A.B., Belousova, I.A., Zubareva, T.M., Turovskaya, M.K., Panchenko, B.V., Razumova, N.G., Gaidash, T.S., & Mikhailov, V.A. (2021) Modern approaches to the development of efficient organized microheterogeneous surfactant-based systems for decomposition of organophosphorus compounds: a review. Chem. safety sci., 5(2), 8 48. https://doi.org/10.25514/CHS.2021.2.20001.
Amerkhanova, S.K., Voloshina, A.D., Mirgorodskaya, A.B., Lyubina A.P., Kuxnetsova D.A., Kushnazarova, R., Mikhailov, V.A., & Zaharova, L.Ya. (2021) Antimicrobial Properties and Cytotoxic Effect of Imidazolium Geminis with Tunable Hydrophobicity. Molec. Sci., 22, art. 13148. https://doi.org/10.3390/i.jms222313148.
Kushnazarova, R.A., Mirgorodskaya, A.B., Voloshina, A.D., Amerhanova, S.K., Zakharova, L.Y., Mikhailov, V.A., Belousova, I.A., Zubareva, T.M., & Prokop'eva, T.M. (2022) Dicationic imidazolium surfactants with a hydroxyl substituent in the spacer fragment. Russ. J Gen. Chem. 92 (4). 659–667 (in Russ). https://doi.org/10.1134/S1070363222040077.
Zabolotniy, A.A., Trush, E.N., Zarechnaya, O.M., & Mikhailov, V.A. (2022) Dicationic bis-imidazoliums as a platform for ionic liquids: long tails and short spacers. J. Ionic Liquids. Art. 100045. https://doi.org/10.1016/j.jil.2022.100045.
Belousova, I.A., Zubareva, T.M., Turovskaya, M.K., Razumova, N.G., Gaidash, T.S., Prokop'eva, T.M., & Mikhailov, V.A. (2022) Organized microheterogeneous systems based on dicationic surfactants in base catalysed hydrolysis of acyl containing substrates. Spacer functionalization. Bulletin of Donetsk National University. Series A. Natural Sciences, 3, 33–40 (in Russ).
Bhati, K., Tripathy, D.B., & Gupta, A. (2020). Gemini Imidazolinium Surfactants: A Versatile Class of Molecules. Colloids – Types, Preparation and Applications. 1 18. https://10.5772/intechopen.94209.
Ao, M., Huang, P., Xu, G., Yang, X., & Wang, Y. (2009). Aggregation and thermodynamic properties of ionic liquid-type gemini imidazolium surfactants with different spacer length. J. Colloid and Polymer Sci., 287, 395–402. https://doi.org/10.1007/S00396-008-1976-X.
Zhao, X, An, D., & Ye, Z. (2016). Adsorption and thermodynamic properties of dissymmetric Gemini imidazolium surfactants with different spacer length. J Dispers. Sci. Techn., 38(2), 296–302. https://doi.org/10.1080/01932691.2016.1163721.
Berezin, I.V., Martinek, K., & Yatsimirskii, A.K. (1973). Physicochemical Foundations of Micellar Catalysis. Russ. Chem. Rev., 42(10), 787–802. (in Russ) https://doi.org/10.1070/rc1973v042n10abeh002744.
Handbook of applied surface and colloid chemistry (2001) / ed. by K.Holmberg. – Weinheim, England: Wiley-VCH Verlag GmbH & Co. KGaA, P. 1100
Bunton, C.A. The dependence of micellar rate effect upon reaction mechanism. (2006). Adv. Coll. Interface Sci., 123–126, 333–343. https://doi.org/10.1016/j.cis.2006.05.008.
Sood A.K., Rupinderjit K., Banipal T.S. (2016). Influence of organic solvents, head-groups and temperature on the micellization behavior of some cationic surfactants. Indian J. Chem. Section a, 55(1), 34–42. https://doi.org/10.1080/00319104.2016.1139711.
Wetting, S.D., Novak, P., & Verrall, R.E. (2002). Thermodynamic and Aggregation Properties of Gemini Surfactants with Hydroxyl Substituted Spacers in Aqueous Solution. Langmuir, 18, 5354–5359. https://doi.org/10.1021/la011782s.
Sood A.K., Rupinderjit K., Banipal T.S. (2016). Influence of organic solvents, head-groups and temperature on the micellization behavior of some cationic surfactants. Indian J. Chem. Section a, 55(1), 34–42. https://doi.org/10.1080/00319104.2016.1139711.
Li, Q., Wang, X., Zhuang, W., Yao, M., Pan, Y., & Chen, X. (2021). Spacer length effect on the aggregation behaviours of Gemini surfactants in EAN. Colloid and Polymer Sci., 299, 685–692. https://doi.org/10.1007/s00396-020-04795-1.
Guerrero-Hernández, L., Meléndez-Ortiz, H.I., Cortez-Mazatan, G.Y., Vaillant-Sánchez, S., & Peralta-Rodríguez, R.D. (2022) Gemini and Bicephalous Surfactants: A Review on Their Synthesis, Micelle Formation, and Uses. Int. J. Mol. Sci., 23, 1798, 1–25. https://doi.org/10.3390/ijms23031798.
Pal, J., Datta, S., Aswal, V.K., & Bhattacharya, S. (2012). Small-Angle Neutron-Scattering Studies of Mixed Micellar Structures Made of Dimeric Surfactants Having Imidazolium and Ammonium Headgroups. J. Phys. Chem. B, 116, 13239–13247. https://doi.org/10.1021/jp304700t.
Javadian, S., & Kakemam, J. (2017) Intermicellar interaction in surfactant solutions; a review study. J. Mol. Liq., 242, 115–128. https://doi.org/10.1016/J.MOLLIQ.2017.06.117.
Bhattacharya, S., & Kumar, P.V. (2004) Evidence of Enhanced Reactivity of DAAP Nucleophiles toward Dephosphorylation and Deacylation Reactions in Cationic Gemini Micellar Media. J. Org. Chem., 69(2), 559–562. https://doi.org/10.1021/jo034745.
Pang Qin-Hui, Zang Rong-Rong, Kang Ge-Li, Li Jian-Mei, Hu Wei, Meng Xiang-Guang, & Zeng Xian-Cheng. (2007) Hydrolysis of p‐Nitrophenyl Picolinate Catalyzed by Gemini Surfactants with Different Hydrophobic Tail Groups. J. Disper. Sci. Technol., 27, 671–675. https://doi.org/10.1080/01932690600660541.
Yunes, S. F., Foroudian, H. J., Gillitt, N. D., & Bunton, C. A. (2005) Effect of micellization on acid dissociation and headgroup conformation of hexadecyl(2-hydroxy-ethyl)dimethylammoniumbromide. Colloids Surf. A Physicochem. Eng. Asp., 262(1–3), 260–268. https://doi.org/10.1016/J.COLSURFA.2005.05.011.
Rosen, M.J., & Kunjappu, J.T. (2012) Surfactants and Interfacial Phenomena (4th Ed ) New Jersey: John Wiley & Sons, P. 600 . https://doi.org/10.1002/9781118228920.
Aguado, J., Escola, J.M., & Castro, M.C. (2010) Influence of the thermal treatment upon the textural properties of sol–gel mesoporous γ-alumina synthesized with cationic surfactants. Microporous Mesoporous Mater., 128, 48–55. https://doi.org/10.1016/j.micromeso.2009.08.002.
Jiang Bing-ying, Zang Rong-rong, Xie Jia-qing, D. Juan, Meng Xiang-guang, & Zeng Xian-cheng (2007) Catalytic Hydrolyses of Carboxylic Acid Esters in the Presence of Gemini Surfactant. J. Disper. Sci. Technol., 26 (1), 105–110. http://dx.doi.org/10.1081/DIS-200042717.
Copyright (c) 2024 Т. М. Прокопьева, И. А. Белоусова, Т. А. Гайдаш, Н. Г. Разумова, А. A. Котенко, В. А. Михайлов
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.