Переработка отходов биомассы и пластиков методом их совместного пиролиза. Обзор

  • Н. Ю. Ковалева Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук, Москва, Россия https://orcid.org/0000-0002-2664-9815
Ключевые слова: пиролиз, совместный пиролиз, отходы биомассы, пластиковые отходы, биомасло, пиролизное масло, теплотворная способность, синергетический эффект, катализаторы, параметры сопиролиза

Аннотация

Рост количества отходов производства и потребления оказывает негативное воздействие на окружающую среду. Для решения проблем утилизации этих отходов рассматривается применение модернизированного способа термохимической конверсии ‒ совместный пиролиз отходов биомассы и пластиков. С экономической точки зрения сопиролиз оказался многообещающим вариантом технологии переработки биомассы для производства пиролизного масла (биомасло). В обзоре обсуждаются преимущества процесса совместного пиролиза, выходы продуктов, механизмы пиролиза биомассы с пластиками и синергетические эффекты между ними, влияние основных рабочих параметров, наиболее важные из которых это соотношение компонентов в исходном сырье и температура процесса. Представлены примеры исследований, проведенных на пилотных установках. Показано, что сопиролиз биомассы с отходами пластмассы более выгоден, чем обычный пиролиз биомассы. Это простое и эффективное решение для получения ценных углеводородных продуктов и достижения эффективного управления отходами. Приведен ряд важных формул для предварительной оценки возможности и эффективности процесса сопиролиза.

Литература

State report “On the state and protection of the environment of the Russian Federation in 2018” http://gosdoklad-ecology.ru/2018/pdf/ (accessed 21.09.2023)

Skurlatov Yu.I., Shtamm E.V., Shvydkii V.O., Shishkina L.N., & Semenyak L.V. (2018) Possible ways to solve problem of safe exploitation of municipal solid waste landfills Khimicheskaya bezopasnost’ = Chemical safety science, 2(2), 238‒250, (in Russ.) https://doi.org/10.25514/CHS.2018.2.14130

Roumak, V.S., & Umnova, N.V. (2020). Biomonitoring of Dioxins-Contaminated Environment in the Landfill Vicinity: to Minimize Human Health Risks. Khimicheskaya bezopasnost’ = Chemical safety science, 4(2), 68–79. (in Russ.) https://doi.org/10.25514/CHS.2020.2.18005

State report “On the state and protection of the environment of the Russian Federation in 2021” https://www.mnr.gov.ru/docs/gosudarstvennye_doklady/gosudarstvennyy_doklad_o_sostoyanii_i_ob_okhrane_okruzhayushchey_sredy_rossiyskoy_federatsii_v_2021_/ (accessed 21.09.2023)

Evolution of landfill in EU countries https://www.europarl.europa.eu/news/en/headlines/society/20180328STO00751/waste-management-in-the-eu-infographic-with-facts-and-figures (accessed 01.10.2023)

Environmental protection in Russia. 2022: Statistical Handbook/Rosstat. Moscow:. Р. 94 https://rosstat.gov.ru/storage/mediabank/Ochrana_okruj_sredi_2022.pdf (accessed 21.09.2023)

Tugov A.N., & Smirnova O.A. (2018) “Concerning the Construction of MSW Incineration Plants in the Moscow Region”. Solid Waste 10, 8–12. (in Russ.)

Avinash A. Patil, Amol A. Kulkarni, & Balasaheb B. Patil. (2014). Waste to energy by incineration. Journal of Computing Technologies (2278 – 3814), 3(6), 2‒15

Communication from The Commission To The European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions. The role of waste-to-energy in the circular economy. Brussels, 26.1.2017.”Official Website of the European Commission. EC, 26 Jan. 2017. PDF-file. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52017DC0034&from=en (accessed 21.09.2023)

Demirbas A. (2002). Analysis of liquid products from biomass via pyrolysis. Energy Source, 24, 337–45. https://doi.org/10.1080/00908310252888718

Fawwazita, M.I.; Jessica J., & Setiadi S. Mixed pyrolysis of rice straw waste and oil palm empty fruit bunch to produce furfural compounds. AIP Conference Proceedings, Volume2376, Issue1, 5th International Tropical Renewable Energy Conference, 2020, P. 0200052021. https://doi.org/10.1063/5.0065049

Choi, Yejin; Jeong, Sangjae; Park, Young-Kwon; Kim, Huijeong; Lim, Se-Jeong; Woo, Gi-Jeong; Pyo, Sumin; Siddiqui, Muhammad Zain; Kim, & Young-Min. (2021). Chemical Feedstock Recovery via the Pyrolysis of Electronically Heated Tobacco Wastes Sustainability 13(22), 12856. https://doi.org/10.3390/su132212856.

Pat. US 2021/0309918 A1, 2021.

Bing, Wang; Zheng, Hongbin; Zeng, Dewang; Fu, Yuefeng; Yu, Qiu; & Rui, Xiao (2021). Microwave fast pyrolysis of waste tires: Effect of microwave power on product composition and quality Journal of Analytical and Applied Pyrolysis. 155, 104979 https://doi.org/10.1016/j.jaap.2020.104979.

Anuar Sharuddin, S.D., Abnisa, F., Wan Daud, W.M.A., & Aroua, M.K. (2016). A review on pyrolysis of plastic wastes Energy Conversion and Management. 115, 308‒326. https://doi.org/10.1016/j.enconman.2016.02.037

Nizami, A., Rehan, M., Ouda, O.K., Shahzad, K., Sadef, Y., Iqbal, T., & Ismail, I.M. (2015). An argument for developing waste-to-energy technologies in Saudi Arabia. Chemical Engineering Transactions, 45, 337–342, https://doi.org/10.3303/CET1545057

Undri, A., Meini, S., Rosi, L., Frediani, M., & Frediani, P. (2013). Microwave pyrolysis of polymeric materials: Waste tires treatment and characterization of the value-added products. J. Anal. Appl. Pyrolysis, 103, 149‒158. https://doi.org/10.1016/j.jaap.2012.11.011.

Jitkarnka, S., Chusaksri, B., Supaphol, P., & Magaraphan, R. (2007). Influences of thermal aging on properties and pyrolysis products of tire tread compound. J. Anal. Appl. Pyrol., 80, 269‒276. https://doi.org/10.1016/j.jaap.2006.07.008

Anex R.P., Aden A., Kazi F.K., Fortman J., Swanson R.M., Wright M.M., Satrio J.A., Brown R.C., Daugaard D.E., Platon A., Kothandaraman G., Hsu D.D., & Dutta A. (2010). Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel, 89, S29‒S35. https://doi.org/10.1016/j.fuel.2010.07.015

Lu, Qiang, Li, Wen-Zhi, & Zhu Xi-Feng (2009). Overview of fuel properties of biomass fast pyrolysis oils. Energy Conversion and Management, 50(5), 1376‒1383 https://doi.org/10.1016/j.enconman.2009.01.001

Maksudur Rahman, Ronghou Liu, & Junmeng Cai. (2018). Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil – A review. Fuel Processing Technology, 180, 32‒46. https://doi.org/10.1016/j.fuproc.2018.08.002

Lee H.W., Kim Y.M., Jae J., Jeon J.K., Jung S.C., Kim S.C., & Park Y.K. (2016). Production of aromatic hydrocarbons via catalytic co-pyrolysis of torrefied cellulose and polypropylene, Energy Convers. Manage. 129, 81‒88. https://doi.org/10.1016/j.enconman.2016.10.001

Zhang X., Lei H., Chen S., & Wu J. (2016). Catalytic co-pyrolysis of lignocellulosic biomass with polymers: A critical review, Green Chem. 18, 4145‒4169. https://doi.org/10.1039/C6GC00911E

Kim Y.M., Lee H.W., Jae J., Jung K.B., & Jung S.C. A. (2017) Watanabe, Y.K. Park, Catalytic copyrolysis of biomass carbohydrates with LLDPE over Al-SBA-15 and mesoporous ZSM-5, Catal. Today 29,8 46‒52.

Kovaleva N.Yu., Raevskaya E.G., & Roshchin A.V. (2020). Plastic waste pyrolysis – a review. Khimicheskaya Bezopasnost’ = Chemical Safety Science, 4(2), 48–79. https://doi.org/10.25514/CHS.2020.1.17004

Hassan, H., Lim, J.K., & Hameed, B.H. (2016). Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil. Bioresour. Technol. 221, 645–655. https://doi.org/10.1016/j.biortech.2016.09.026.

Tencati, A., Pogutz, S., Moda, B., Brambilla, M., & Cacia, C. (2016). Prevention policies addressing packaging and packaging waste: Some emerging trends. Waste Manage. 56, 35–45. https://doi.org/10.1016/j.wasman.2016.06.025.

Ghayebzadeh, M., Taghipour, H., & Aslani, H. (2020). Estimation of plastic waste inputs from land into the Persian Gulf and the Gulf of Oman: an environmental disaster, scientific and social concerns. Sci. Total Environ. 733, 138942. https://doi.org/10.1016/j.scitotenv.2020.138942.

World Bank report “What a Waste: A Global Review of Solid Waste Management” 2012. https://openknowledge.worldbank.org/handle/10986/17388

Ansah Emmanuel, Wang Lijun, & Shahbazi Abolghasem. (2016 ). Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components. Waste Management 56, 196 ‒206. http://dx.doi.org/10.1016/j.wasman.2016.06.015

Sipra Ayesha Tariq, Gao Ningbo, & Sarwar Haris. (2018). Municipal solid waste (MSW) pyrolysis for bio-fuel production: A review of effects of MSW components and catalysts, Fuel Processing Technology, 175, 131‒147. https://doi.org/10.1016/j.fuproc.2018.02.012

Hae Won Ryua, Do Heui Kima, Jungho Jaeb, Su Shiung Lamc, Eun Duck Parkd, & Young-Kwon Parke (2020). Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons, Bioresource Technology, 310, 123473. https://doi.org/10.1016/j.biortech.2020.123473

Huber, G.W., Iborra, S., & Corma, A. (2006). Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098. https://doi.org/10.1021/cr068360d

Agrawal, T., Quraishi, A., & Jadhav, S.K., (2019). Bioethnaol production from Madhuca latifolia L. flowers by a newly isolated strain of Pichia kudriavzevii. Energy Environ. 30, 1477–1490. https://doi.org/10.1177/0958305X19852475

Conti, R., Pezzolesi, L., Pistocchi, R., Torri, C., Massoli, P., & Fabbri, D. (2016 ). Photobioreactor cultivation and catalytic pyrolysis of the microalga Desmodesmus communis (Chlorophyceae) for hydrocarbons production by HZSM-5 zeolite cracking. Bioresour. Technol. 222, 148–155. https://doi.org/10.1016/j.biortech.2016.10.002

Jung KA, Lim SR, Kim Y, et al. (2013). Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol;135, 182–90. https://doi.org/10.1016/j.biortech.2012.10.025

Saber M, Nakhshiniev B, & Yoshikawa K. (2016). A review of production and upgrading of algal bio-oil. Renew Sust Energy Rev, 58. 918–30. https://doi.org/10.1016/j.rser.2015.12.342

Hendriks, A.T.W.M., & Zeeman, G., (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18. https://doi.org/10.1016/j.biortech.2008.05.027

Huber, G.W., Iborra, S., & Corma, A. (2006). Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098. https://doi.org/10.1021/cr068360d

Hansen, N.M.L., & Plackett, D. (2008). Sustainable films and coatings from hemicelluloses: a review. Biomacromolecules 9, 1493–1505. https://doi.org/10.1021/bm800053z

Ratnaweeraa DR, Saha D, Pingali SV, Labbé N, Naskar AK, & Dadmun M. (2015). The impact of lignin source on its self-assembly in solution. RSC Adv. 5(82), 67258–66. https://doi.org/10.1039/C5RA13485D

Agirre, I., Griessacher, T., Rösler, G., & Antrekowitsch, J. (2013). Production of charcoal as an alternative reducing agent from agricultural residues using a semicontinuous semi-pilot scale pyrolysis screw reactor. Fuel Process. Technol. 106, 114–121. https://doi.org/10.1016/j.fuproc.2012.07.010

Buah, W.K., Cunliffe, A.M., & Williams, P.T. (2007). Characterization of products from the pyrolysis of municipal solid waste. Process Saf. Environ. 85, 450–457. https://doi.org/10.1205/psep07024

AlMohamadi, H., Gunukula, S., DeSisto, W.J., & Wheeler, M.C. (2018). Formate‐assisted pyrolysis of biomass: an economic and model-ing analysis. Biofuels, Bioproducts and Biore-fining, 12, 45–55, https://doi.org/10.1002/bbb.1827

Bridgewater, A.V., 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38, 68–94.). https://doi.org/10.1016/j.biombioe.2011.01.048

Velghe I., Carleer R., Yperman J., & Schreurs S. (2011) Study of the pyrolysis of municipal solid waste for the production of valuable products, J. Anal. Appl. Pyrolysis 92(2) 366–375. https://doi.org/10.1016/j.jaap.2011.07.011

Motasemi F., & Afzal M.T. (2013). A review on the microwave-assisted pyrolysis technique, Renew. Sust. Energ. Rev. 28, 317–330. https://doi.org/10.1016/j.rser.2013.08.008

Pütün, E. (2010). Catalytic pyrolysis of bio-mass: Effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst. Energy, 35, 2761–2766, https://doi.org/10.1016/j.energy.2010.02.024

Guillain M., Fairouz K., Mar S.R., Monique F, & Jacques L.D. (2009). Attrition-free pyrolysis to produce bio-oil and char. Bioresour Technol;100, 6069–75. https://doi.org/10.1016/j.biortech.2009.06.085

Bridgwater A.V., Meier D, & Radlein D. (1999). An overview of fast pyrolysis of biomass. Org Geochem 30, 1479–93. https://doi.org/10.1016/S0146-6380(99)00120-5.

Oasmaa A, Czernik S. (1999). Fuel oil quality of biomass pyrolysis oils-state of the art for the end users. Energy Fuel;13, 914–21. https://doi.org/10.1021/ef980272b.

Parihar MF, Kamil M, Goyal HB, & Gupta AK. (2007). Bhatnagar AK. An experimental study on pyrolysis of biomass. Process Saf Environ Prot, 85, 458–65. https://doi.org/10.1205/psep07035.

S.A. Channiwala , P.P. Parikh. (2002). A unified correlation for estimating HHV of solid, liquid and gaseous fuels Fuel, 81, (8), 1051–1063, https://doi.org/10.1016/S0016-2361(01)00131-4

Velden MV, Baeyens J, Brems A, Janssens B, & Dewil R. (2010). Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew Energy, 35, 232–42. https://doi.org/10.1016/j.renene.2009.04.019.

Zhou X, Broadbelt LJ, & Vinu R. (2016). Mechanistic understanding of thermochemical conversion of polymers and lignocellulosic biomass. Adv Chem Eng, 49, 95–198. https://doi.org/10.1016/bs.ache.2016.09.002.

Vinu R., & Broadbelt L.J. (2012). A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition. Energy Environ Sci, 5, 9808–26. https://doi.org/10.1039/c2ee22784c.

Shen D.K., & Gu S. (2009). The mechanism for thermal decomposition of cellulose and its main products. Bioresource Technology 100, 6496–6504 https://doi.org/10.1016/j.biortech.2009.06.095.

Li, S., Lyons-Hart, J., Banyasz, J., & Shafer, K., 2001. Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis. Fuel 80, 1809–1817. https://doi.org/10.1016/S0016-2361(01)00064-3.

Joshi N., & Lawal A. (2012). Hydrodeoxygenation of pyrolysis oil in a microreactor. Chem Eng Sci, 74, 1–8. https://doi.org/10.1016/j.ces.2012.01.052.

Hew K.L., Tamidi A.M., Yusup S., Lee K.T, & Ahmad M.M. (2010). Catalytic cracking of bio-oil to organic liquid product (OLP). Bioresour Technol, 101, 8855–8. https://doi.org/10.1016/j.biortech.2010.05.036.

Samolada M.C., Baldauf W., & Vasalos I.A. (1998). Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking. Fuel, 77, 1667–75. https://doi.org/10.1016/S0016-2361(98)00073-8

Toba M., Abe Y., Kuramochi H., Osako M., Mochizuki T., & Yoshimura Y. (2011). Hydrodeoxygenation of waste vegetable oil over sulfide catalysts. Catal Today, 164, 533–7.. https://doi.org/10.1016/j.cattod.2010.11.049.

Zhou L., W.Y, Huang Q., & Cai J. (2006). Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Fuel Process Technol, 87, 963–9. https://doi.org/10.1016/j.fuproc.2006.07.002

Aboulkas A., & Harfi E.K. (2009). Co-pyrolysis of olive residue with poly (vinyl chloride) using thermogravimetric analysis. J Therm Anal Calorim, 95, 1007–13. https://doi.org/10.1016/j.enconman.2016.01.005.

Chen W., Shi S., Zhang J., Chen M., & Zhou X. (2016). Co-pyrolysis of waste newspaper with high-density polyethylene: synergistic effect and oil characterization. Energy Convers Manage, 112, 41–8. https://doi.org/10.1016/S0016-2361(98)00073-8

Guan Y, Ma Y, Zhang K, Chen H, Xu G, Liu W, et al. (2015). Co-pyrolysis behaviors of energy grass and lignite. Energy Convers Manage 93, 132–40. https://doi.org/10.1016/j.enconman.2015.01.006.

Ferrara F, Orsini A, Plaisant A, & Pettinau A. (2014). Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis. Bioresour Technol, 171, 433–41. https://doi.org/10.1016/j.biortech.2014.08.104.

Bridgwater T. (2006). Biomass for energy. J Sci Food Agric, 86, 1755–68. https://doi.org/10.1002/jsfa.2605.

Lopez G., Artetxe M., Amutio M., Bilbao J., & Olazar M. (2017). Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renew Sustain Energy Rev, 73, 346–68. https://doi.org/10.1016/j.rser.2017.01.142.

Krerkkaiwan S., Fushimi C., Tsutsumi A., & Kuchonthara P. (2013). Synergetic effect during copyrolysis/gasification of biomass and sub-bituminous coal. Fuel Process Technol, 115, 11–18. https://doi.org/10.1016/j.fuproc.2013.03.044.

Yang J, Rizkiana J, Widayatno WB, Karnjanakom S, Kaewpanha M, Hao X, et al. (2016). Fast co-pyrolysis of low density polyethylene and biomass residue for oil production. Energy Convers Manage, 20, 422–9. https://doi.org/10.1016/j.enconman.2016.05.008.

Dorado C., Mullen C.A., & Boateng A.A. (2015). Origin of carbon in aromatic and olefin products derived from HZSM-5 catalyzed co-pyrolysis of cellulose and plastics via isotopic labeling. Appl Catal B. Environ, 162, 338–45. https://doi.org/10.1016/j.apcatb.2014.07.006.

Abnisa F.W.M.A.D., Ramalingam S., Azemi M.N.B.M., & Sahu J.N. (2013). Co-pyrolysis of palm shell and polystyrene waste mixtures to synthesis liquid fuel. Fuel, 108, 311–8. https://doi.org/10.1016/j.fuel.2013.02.013.

Paradela F., Pinto F., Gulyurtlu I., Cabrita I., & Lapa N. (2009). Study of the co-pyrolysis of biomass and plastic wastes. Clean Technol Environ Policy, 11, 115–22. https://doi.org/10.1007/s10098-008-0176-1.

Shadangi K.P., & Mohanty K. (2015). Co-pyrolysis of Karanja and Niger seeds with waste polystyrene to produce liquid fuel. Fuel, 153, 492–8. https://doi.org/10.1016/j.fuel.2015.03.017.

Hua Y., Chen Y., Li J., Yang M., & Lu X. (2015). Co-pyrolysis behaviors of the cotton straw/PP mixtures and catalysis hydrodeoxygenation of co-pyrolysis products over Ni-Mo/ Al2O3 catalyst. Catalysts, 5, 2085–97. https://doi.org/10.3390/catal5042085.

Brebu M., Ucar S., Vasile C., & Yanik J. (2010). Co-pyrolysis of pine cone with synthetic polymers. Fuel, 89, 1911–8. https://doi.org/10.1016/j.fuel.2010.01.029.

Rutkowski P., & Kubacki A. (2006). Influence of polystyrene addition to cellulose on chemical structure and properties of bio-oil obtained during pyrolysis. Energy Convers Manage, 47, 716–31. https://doi.org/10.1016/j.enconman.2005.05.017.

Hae Won Ryu, Yiu Fai Tsang, Hyung Won Lee, Jungho Jae, Sang-Chul Jung, Su Shiung Lam, Eun Duck Park, & Young-Kwon Park. (2019). Catalytic co-pyrolysis of cellulose and linear low-density polyethylene over MgO impregnated catalysts with different acid-base properties. Chemical Engineering Journa,l 373, 375‒381 https://doi.org/10.1016/j.cej.2019.05.049

Uzoejinwaa, Benjamin, Bernard, He, Xiuhua, Wang, Shuang, Abomohraa, Abd El-Fatah, Hua Yamin, & Wang, Qian. (2018). Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide Energy Conversion and Management 163, 468–492. https://doi.org/10.1016/j.enconman.2018.02.004.

Tursunov, O. (2014) A comparison of catalysts zeolite and calcined dolomite for gas production from pyrolysis of municipal solid waste (MSW), Ecol. Eng. 69237–243. https://doi.org/10.1016/j.ecoleng.2014.04.004.

Oyedun A.O., Tee C.Z., Hanson S., & Hui C.W. (2016). Thermogravimetric analysis of the pyrolysis characteristics and kinetics of plastics and biomass blends. Fuel Process Technol 2014;128:471–81. 67 Hassan H, Lim JK, Hameed BH. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil. Bioresour Technol, 221, 645–55. https://doi.org/10.1016/j.biortech.2016.09.026.

Demirbas A. (2009). Pyrolysis mechanisms of biomass materials. Energy Sour Part A, 31, 1186–93. https://doi.org/10.1080/15567030801952268.

Onal E, Uzun BB, & Putun AE. (2014). Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene. Energy Convers Manag, 78, 704–10. https://doi.org/10.1016/j.enconman.2013.11.022.

Jakab E., Blazso M., & Faix O. (2001). Thermal decomposition of mixtures of vinylpolymers and lignocellulosic materials. J Anal Appl Pyrol, 58–59, 49–62. https://doi.org/10.1016/S0165-2370(00)00180-7.

Abnisa, Faisal, & Daud, Wan Mohd Ashri Wan. (2014). A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil Energy Conversion and Management 87, 71‒85. https://doi.org/10.1016/j.enconman.2014.07.007.

Gin, A.W., Hassan, H., Ahmad, M.A., Hameed, B.H., & Mohd Din, A. T., 2021. Recent progress on catalytic co-pyrolysis of plastic waste and lignocellulosic biomass to liquid fuel: the influence of technical and reaction kinetic parameters. Arabian J. Chem. 14. https://doi.org/10.1016/j.arabjc.2021.103035.

Parikha, J., Channiwalab, S.A., & Ghosal, G.K. (2005). A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, 84, 487‒494. https://doi.org/10.1016/j.fuel.2004.10.010]

Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics Mahboob Alam a, Anjireddy Bhavanam, Ashirbad Jana, Jaimin Kumar S. Viroja, & Nageswara Rao Peela Renewable Energy 149 (2020) 1133‒1145. https://doi.org/10.1016/j.renene.2019.10.103.

Han, B., Chen, Y., Wu, Y., Hua, D., Chen, Z., Feng, W., Yang, M., & Xie, Q. (2014) Co-pyrolysis behaviors and kinetics of plastics-biomass blends through thermogravimetric analysis, J. Therm. Anal. Calorim. 115, 227–235. https://doi.org/10.1007/s10973-013-3228-7

Chattopadhyay J., Kim C., Kim R., & Pak D., (2008). Thermogravimetric characteristics and kinetic study of biomass co-pyrolysis with plastics, Korean J. Chem. Eng. 25, 1047–1053, https://doi.org/10.1007/s11814-008-0171-6.

Park D.K., Kim S.D., Lee S.H., & Lee J.G. (2010). Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor, Bioresour. Technol. 101, 6151–6156, https://doi.org/10.1016/j.biortech.2010.02.087.

Sonobe T., Worasuwannarak N., & Pipatmanomai, S. (2008) Synergies in co-pyrolysis of Thai lignite and corncob, Fuel Process. Technol. 89 1371–1378, https://doi.org/10.1016/j.fuproc.2008.06.006.

Martínez J.D. et al. (2014) Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel. Fuel Process Technol 119:263–271. https://doi.org/10.1016/j.fuproc.2013.11.015

Suriapparao, D.V., & Vinu, R., (2021). Biomass waste conversion into value-added products via microwave-assisted Co-Pyrolysis platform. Renew. Energy 170, 400–409. https://doi.org/10.1016/j.renene.2021.02.010.

Rahman, M.H., Bhoi, P.R., Saha, A., Patil, V., & Adhikari, S., (2021). Thermo-catalytic co-pyrolysis of biomass and high-density polyethylene for improving the yield and quality of pyrolysis liquid. Energy 225, 120231. https://doi.org/10.1016/j.energy.2021.120231.

Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, & Sbirrazzuoli N. (2011). ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520, 1–19. https://doi.org/10.1016/j.tca.2011.03.034.

Suriapparao D., Ojha D., Ray T., & Vinu R. (2014). Kinetic analysis of co-pyrolysis of cellulose and polypropylene. J Therm Anal Calorim,117, 1441–51.

Y. He, C. Chang, P. Li, X. Han, H. Li, S. Fang, J. Chen, & X. Ma, Thermal decomposition and kinetics of coal and fermented cornstalk using thermogravimetric analysis, Bioresour. Technol. 259 (2018) 294e303, https://doi.org/10.1016/j.biortech.2018.03.043.

S. Vyazovkin, Isoconversional kinetics of thermally stimulated processes, Macromol. Rapid Commun. 18 (2006) 1505–1616, https://doi.org/10.1007/978-3-319-14175-6

S.M. Al-Salem, A. Bumajdad, A.R. Khan, B.K. Sharma, S.R. Chandrasekaran, F.A. Al-Turki, F.H. Jassem, & A.T. Al-Dhafeeri, Non-isothermal degradation kinetics of virgin linear low density polyethylene (LLDPE) and biodegradable polymer blends, J. Polym. Res. 25 (2018), https://doi.org/10.1007/s10965-018-1513-7.

Gelfer M.Y., & Winter H.H.. (1999). Effect of branch distribution on rheology of LLDPE during early stages of crystallization, Macromolecules 32 8974–8981.

Suriapparao D.V., Ojha D.K., Ray T., & Vinu R., Kinetic analysis of co-pyrolysis of cellulose and polypropylene, J. Therm. Anal. Calorim. 117, (2014) 1441–1451, https://doi.org/10.1007/s10973-014-3866-4.

Dyer, A.C., Nahil, M.A., & Williams, P.T. 2021. Catalytic co-pyrolysis of biomass and waste plastics as a route to upgraded bio-oil. J. Energy Inst. 97, 27–36. https://doi.org/10.1016/j.joei.2021.03.022.

Antonakou, E.V., Kalogiannis, K.G., Stefanidis, S.D., Karakoulia, S.A., Triantafyllidis, K.S., Lappas, A.A., & Achilias, D.S. (2014). Catalytic and thermal pyrolysis of polycarbonate in a fixed-bed reactor: the effect of catalysts on products yields and composition. Polym. Degrad. Stab. 110, 482–491. https://doi.org/10.1016/j.polymdegradstab.2014.10.007.

Rocha, M.V., Vinuesa, A.J., Pierella, L.B., & Renzini, M.S. (2020). Enhancement of bio-oil obtained from co-pyrolysis of lignocellulose biomass and LDPE by using a natural zeolite. Therm. Sci. Eng. Prog. 19, 100654. https://doi.org/10.1016/j.tsep.2020.100654.

Ryu, S., Lee, H.W., Kim, Y.M., Jae, J., Jung, S.C., Ha, J.M., & Park, Y.K. (2020a). Catalytic fast co-pyrolysis of organosolv lignin and polypropylene over in-situ red mud and ex-situ HZSM-5 in two step catalytic micro reactor. Appl. Surf. Sci. 511, 1–10. https://doi.org/10.1016/j.apsusc.2020.145521.

Han, Z., Li, J., Gu, T., Yan, B., & Chen, G. (2020). The synergistic effects of polyvinyl chloride and biomass during combustible solid waste pyrolysis: experimental investigation and modeling. Energy Convers. Manage. 222, 113237. https://doi.org/10.1016/j.enconman.2020.113237.

Chi, Y., Xue, J., Zhuo, J., Zhang, D., Liu, M., & Yao, Q. (2018). Catalytic co-pyrolysis of cellulose and polypropylene over all-silica mesoporous catalyst MCM-41 and Al-MCM-41. Sci. Total Environ. 633, 1105–1113. https://doi.org/10.1016/j. scitotenv.2018.03.239.

Li X et al. (2013). Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene. Appl Catal A 455, 114–121. https://doi.org/10.1016/j.apcata.2013.01.038.

Kim, B.S., Kim, Y.M., Lee, H.W., Jae, J., Kim, D.H., Jung, S.C., Watanabe, C., & Park, Y.K. (2016). Catalytic copyrolysis of cellulose and thermoplastics over HZSM-5 and HY. ACS Sustainable Chem. Eng. 4, 1354–1363. https://doi.org/10.1021/acssuschemeng.5b01381.

Hassan, H., Lim, J.K., & Hameed, B.H. (2019). Catalytic co-pyrolysis of sugarcane bagasse and waste high-density polyethylene over faujasite-type zeolite. Bioresour. Technol. 284, 406–414. https://doi.org/10.1016/j.biortech.2019.03.137.

Kim, Y.M., Lee, H.W., Choi, S.J., Jeon, J.K., Park, S.H., Jung, S.C., Kim, S.C., & Park, Y.K. (2017b). Catalytic co-pyrolysis of polypropylene and Laminaria japonica over zeolitic materials. Int. J. Hydrogen Energy. 42, 18434–18441. https://doi.org/10.1016/j.ijhydene.2017.04.139.

Hong, Y., Lee, Y., Rezaei, P.S., Kim, B.S., Jeon, J.K., Jae, J., Jung, S. C., Kim, S.C., & Park, Y.K. (2017). In-situ catalytic copyrolysis of cellulose and polypropylene over desilicated ZSM-5. Catal. Today. 293–294, 151–158. https://doi.org/10.1016/j.cattod.2016.11.045.

Botas, J.A., Serrano, D.P., Garcı´a, A., & Ramos, R. (2014). Catalytic conversion of rapeseed oil for the production of raw chemicals, fuels and carbon nanotubes over Ni-modified nanocrystalline and hierarchical ZSM-5. Appl. Catal. B: Environ. 145, 205–215. https://doi.org/10.1016/j.apcatb.2012.12.023.

Razzaq, M., Zeeshan, M., Qaisar, S., Iftikhar, H., & Muneer, B. (2019). Investigating use of metal-modified HZSM-5 catalyst to upgrade liquid yield in co-pyrolysis of wheat straw and polystyrene. Fuel 257, 116119. https://doi.org/10.1016/J.FUEL.2019.116119.

French, R., & Czernik, S. (2010). Catalytic pyrolysis of biomass for biofuels production. Fuel Process. Technol. 91, 25–32. https://doi.org/10.1016/j.fuproc.2009.08.011.

Talebian-Kiakalaieh, A., & Tarighi, S. (2020). Synthesis of hierarchical Y and ZSM-5 zeolites using post-treatment approach to maximize catalytic cracking performance. J. Indus. Eng. Chem. 88, 167–177. https://doi.org/10.1016/j.jiec.2020.04.009.).

Kim, Y.M., Jeong, J., Ryu, S., Lee, H.W., Jung, J.S., Siddiqui, M.Z., Jung, S.C., Jeon, J.K., Jae, J., & Park, Y.K. (2019). Catalytic pyrolysis of wood polymer composites over hierarchical mesoporous zeolites. Energy Convers. Manage. 195, 727–737. https://doi.org/10.1016/j.enconman.2019.05.034.

Enterría, M., Suárez-García, F., Martínez-Alonso, A., & Tascón, J.M. D. (2014). Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple y zeolite/MCM-48 silica assembly. J. Alloy. Compd. 583, 60–69. https://doi.org/10.1016/j.jallcom.2013.08.137.

Ahmed, M.H.M., Batalha, N., Mahmudul, H.M.D., & Perkins, G. (2020). A review on advanced catalytic co-pyrolysis of biomass and hydrogen-rich feedstock: insights into synergistic effect, catalyst development and reaction mechanism. Bioresour. Technol. 310, 123457. https://doi.org/10.1016/j.biortech.2020.123457.

Lin, X., Kong, L., Ren, X., Zhang, D., Cai, H., & Lei, H. (2021). Catalytic co-pyrolysis of torrefied poplar wood and high-density polyethylene over hierarchical HZSM-5 for mono-aromatics production. Renew. Energy 164, 87–95. https://doi.org/10.1016/j.renene.2020.09.071.

Wang, S., Li, Z., Bai, X., Yi, W., & Fu, P. (2019). Catalytic pyrolysis of lignin in a cascade dual-catalyst system of modified red mud and HZSM-5 for aromatic hydrocarbon production. Bioresour. Technol. 278, 66–72. https://doi.org/10.1016/j.biortech.2019.01.037.

Das, B., & Mohanty, K. (2019). A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud. Renew. Energy 143, 1791–1811. https://doi.org/10.1016/j.renene.2019.05.114.

Chang, G., Shi, P., Guo, Y., Wang, L., Wang, C., & Guo, Q. (2020). Enhanced pyrolysis of palm kernel shell wastes to bio-based chemicals and syngas using red mud as an additive. J. Clean. Prod. 272, 122847. https://doi.org/10.1016/j.jclepro.2020.122847.

Kelkar, S., Saffron, C.M., Andreassi, K., Li, Z., Murkute, A., Miller, D.J., Pinnavaia, T.J., & Kriegel, R.M. (2015). A survey of catalysts for aromatics from fast pyrolysis of biomass. Appl. Catal. B: Environ. 174–175, 85–95. https://doi.org/10.1016/j.apcatb.2015.02.020.

Yathavan, B.K., & Agblevor, F.A. (2013). Catalytic pyrolysis of pinyonjuniper using red mud and HZSM-5. Energy Fuels 27, 6858–6865. https://doi.org/10.1021/ef401853a.

Ding K. et al. (2018). Improving hydrocarbon yield via catalytic fast co-pyrolysis of biomass and plastic over ceria and HZSM-5: An analytical pyrolyzer analysis. Biores Technol 268, 1–8. https://doi.org/10.1016/j.biortech.2018.07.108.

Li J. et al. (2015). Maximizing carbon efficiency of petrochemical production from catalytic co-pyrolysis of biomass and plastics using gallium-containing MFI zeolites. Appl Catal B 172–173, 154–164. https://doi.org/10.1016/j.apcatb.2015.02.015.

Wang J. et al. (2017). Co-pyrolysis of bamboo residual with waste tire over dual catalytic stage of CaO and co-modified HZSM-5. Energy 133, 90–98. https://doi.org/10.1016/j.energy.2017.05.146.

Shafaghat H. et al. (2019). In-situ and ex-situ catalytic pyrolysis/co-pyrolysis of empty fruit bunches using mesostructured aluminosilicate catalysts. Chem Eng J 366, 330–338. https://doi.org/10.1016/j.cej.2019.02.055.

Rezaei P.S. et al. (2017). In-situ catalytic co-pyrolysis of yellow poplar and high-density polyethylene over mesoporous catalysts. Energy Convers Manag 151, 116–122. https://doi.org/10.1016/j.enconman.2017.08.073.

Ryu H.W. et al. (2019). Catalytic co-pyrolysis of cellulose and linear low-density polyethylene over MgO-impregnated catalysts with different acid-base properties. Chem Eng J. 373, 375–381. https://doi.org/10.1016/j.cej.2019.05.049.

Morais E.K.L. et al. (2019). Catalytic copyrolysis of lignocellulose and polyethylene blends over HBeta zeolite. Ind Eng Chem Res 58(16), 6243–6254. https://doi.org/10.1021/acs.iecr.8b06158.

Veses A. et al. (2020). From laboratory scale to pilot plant: Evaluation of the catalytic co-pyrolysis of grape seeds and polystyrene wastes with CaO. Catalysis Today 379, 87–95. https://doi.org/10.1016/j.cattod.2020.04.054.

Sanahuja-Parejo O. et al. (2019). Drop-in biofuels from the co-pyrolysis of grape seeds and polystyrene. Chem Eng J 377, 120246. https://doi.org/10.1016/j.cej.2018.10.183.

Sanahuja-Parejo O. et al. (2018). Catalytic co-pyrolysis of grape seeds and waste tires for the production of drop-in biofuels. Energy Convers Manag 171, 1202–1212. https://doi.org/10.1016/j.enconman.2018.06.053.

Johansson AC, Sandström L, Öhrman OGW, & Jilvero H. (2018). Co-pyrolysis of woody biomass and plastic waste in both analytical and pilot scale. J Anal Appl Pyrol 134, 102–113. https://doi.org/10.1016/j.jaap.2018.05.015.

Puy N. et al. (2011). Valorisation of forestry waste by pyrolysis in an auger reactor. Waste Manage 31(6), 1339–1349. https://doi.org/10.1016/j.wasman.2011.01.020.

Aylón E, Fernández-Colino A., Navarro M.V., Murillor R., García T., & Mastral A.M. (2008). Waste tire pyrolysis: Comparison between fixed bed reactor and moving bed reactor. Ind Eng Chem Res 47(12), 4029–4033. https://doi.org/10.1021/ie071573o.

Boateng, A.A., & Mullen, C.A. (2013). Fast pyrolysis of biomass thermally pretreated by torrefaction. J. Anal. Appl. Pyrol. 100, 95–102. https://doi.org/10.1016/j.jaap.2012.12.002.

Опубликован
2023-12-05
Как цитировать
Ковалева, Н. Ю. (2023). Переработка отходов биомассы и пластиков методом их совместного пиролиза. Обзор. Химическая безопасность, 7(2), 95–133. https://doi.org/10.25514/CHS.2023.2.25007
Раздел
Утилизация и биодеградация отходов