Biohydrogen production from milk whey by continuous dark anaerobic fermentation in apparatus of two types: start-up stage

Keywords: : biohydrogen, milk whey, dark anaerobic fermentation, inactivation of methanogens, immobilization of biomass.

Abstract

Production of biohydrogen (H2) from renewable energy sources (production and consumption waste) is an upcoming trend in energy industry. H2 is considered as a unique energy carrier with a high energy yield (122 kJ/g). The paper presents the results of investigating the start-up stage of the process of continuous dark fermentation of milk whey under mesophilic conditions with the production of hydrogen-containing biogas in two types of reactors: with a fixed feed (flooded biofilter – anaerobic filter, AF) and with a movable load (apparatus with fluidized bed loading – AFB). Methanogens are inactivated by the thermal method (90°C, 30 min). At the initial stage of the process, the optimal regime is achieved with hydraulic retention time of 12–14 days, and organic loading rate of 1.88–2.25 kg COD/(m3·day). This mode makes it possible to run the process with a stable biogas generation with hydrogen content of 15.9% (for AF) and 11.4% (for AFB) and maintaining the pH of the medium at 5.72. The total amount of biogas formed over 17 days of dark anaerobic fermentation processing in the AF-type reactor was greater than in the AFB-type reactor. The butyric acid content exceeded the acetic acid content in both types of reactors.

References

Banu, J.R., Kannah, R.Y., Kavitha, S., Usman, T.M.M., Gunasekaran, M., Kumar, G., & Kim, S-H. (2020). Biohydrogen: resource recovery from industrial wastewater. Current Developments in Biotechnology and Bioengineering, 51 - 87. https://doi.org/10.1016/B978-0-444-64321-6.00004-5

Carvalho, F., Prazeres, A.R., & Rivas, J. (2013). Cheese whey wastewater: characterization and treatment. Sci. Total Environ., 445-446, 385 - 396. https://doi.org/10.1016/j.scitotenv.2012.12.038

De Gioannis, G., Friargiu, M., Massi, E., Muntoni, A., Polettini, A., Pomi, R., & Spiga, D. (2014). Biohydrogen production from dark fermentation of cheese whey: influence of pH. Int. J. Hydrogen Energy, 39, 20930 - 20941.https://doi.org/10.1016/j.ijhydene.2014.10.046

Calli, B., Schoenmaekers, K., Vanbroekhoven, K., & Diels, L. (2008). Dark fermentative H2 production from xylose and lactose – Effects of on-line pH control. Int. J. Hydrogen Energy, 33(2), 522 - 530.https://doi.org/10.1016/j.ijhydene.2007.10.012

Pandey, A., Mohan, S.V., Chang, J.-S., Hallenbeck, P.C., & Larroche, C. (2019). Biomass, Biofuels, Biochemicals: Biohydrogen. Second Edition. Elsevier. DOI: 10.1016/B978-0-444-64203-5.00004-6

Davila-Vazquez, G., Alatriste-Mondragon, F., Leon-Rodriguez, A., & Razo-Flores, E. (2008). Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: Influence of initial substrate concentration and pH. Int. J. Hydrogen Energy, 33(19), 4989 - 4997. https://doi.org/10.1016/j.ijhydene.2008.06.065

Sivagurunathan, P., Kumar, G., Pugazhendhi, A., Zhen, G., Kobayashi, T., & Xu, K. (2017). Biohydrogen production from wastewaters. In: Biological wastewater treatment and resource recovery. IntechOpen. DOI: 10.5772/65891

Akinbomi, J., Wikandari, R., & Taherzadeh, M.J. (2015). Enhanced fermentative hydrogen and methane production from an inhibitory fruit-flavored medium with membrane-encapsulated cells. Membranes, 5(4), 616 - 631. https://doi.org/10.3390/membranes5040616

Andreani C.L., Torres D.G., Schultz L., de Carvalho K.Q., Gomes S.D. (2015). Hydrogen production from cassava processing wastewater in an anaerobic fixed bed reactor with bamboo as a support material. Eng. Agríc., 35(3), 578 - 587. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v35n3p578-587/2015

Kirli, B., & Kapdan, I.K. (2016). Selection of microorganism immobilization particle for dark fermentative biohydrogen production by repeated batch operation. Renew. Energy, 87(1), 697 - 702. https://doi.org/10.1016/j.renene.2015.11.003

Gokfiliz, P., & Karapinar, I. (2017). The effect of support particle type on thermophilic hydrogen production by mobilized batch dark fermentation. Int. J. Hydrogen Energy, 42(4), 2553 - 2561. https://doi.org/10.1016/j.ijhydene.2016.03.041

Lima, D.M.F., Inoue, R.K., Rodrigues, J.A. D., Ratusznei, S.M., & Zaiat, M. (2015). Biohydrogen from cheese whey treatment in an AnSBBR: achieving process stability. Brazilian J. Chem. Engin., 32(2). https://doi.org/10.1590/0104-6632.20150322s00003342

Preethic, Usman, T.M.M., Banu, J.R., Gunasekaran, M., & Kumar, G. (2019). Biohydrogen production from industrial wastewater: An overview. Bioresource Technology Reports, 7, 100287. https://doi.org/10.1016/j.biteb.2019.100287

Ren, N.-Q., Guo, W.-Q., Wang, X.-J., Xiang, W.-S., Liu, B.-F., Wang, X.-Z., Ding, J., & Chen, Z.-B. 2008). Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production. International Journal of Hydrogen Energy, 33(16), 4318 - 4324. https://doi.org/10.1016/j.ijhydene.2008.06.003

Kumar, G., Bakonyi, P., Sivagurunathan, P., Nemestóthy, N., Bélafi‐Bakó, K., & Lin, C‐Y. (2015). Improved microbial conversion of de‐oiled Jatropha waste into biohydrogen via inoculum pretreatment: process optimization by experimental design approach. Biofuel Research Journal, 5, 209 - 14. DOI: 10.18331/BRJ2015.2.1.7

Mikheeva, E.R., Katraeva, I.V., Vorozhtsov, D.L., Litti, Yu.V., & Nozhevnikova, A.N. (2020). Efficiency of two-phase anaerobic fermentation and the physicochemical properties of the organic fractionof municipal solid waste processed in a vortex-layer apparatus. Applied Biochemistry and Microbiology, 56(6), 736 - 742. https://doi.org/10.1134/S0003683820060113

Chen, W.-H., Sung, S., & Chen, S.-Y. (2009). Biological hydrogen production in an anaerobic sequencing batch reactor: pH and cyclic duration effects. International Journal of Hydrogen Energy, 34(1), 227 - 234. https://doi.org/10.1016/j.ijhydene.2008.09.061

Van Ginkel, S.W., Oh, S-E., & Logan, B.E. (2005). Biohydrogen gas production from food processing and domestic wastewaters. Int. J. Hydrogen Energy, 30(15), 1535 - 1542. https://doi.org/10.1016/j.ijhydene.2004.09.017

Walichnowski, A.Z., & Lawrence, S.G. (1982). Studies into the effects of cadmium and low pH upon methane production. Hydrobiologia, 91, 559 - 569. https://doi.org/10.1007/BF00000054

Kim, I.S., Hwang, M.H, Jang, N.J., Hyun, S.H., & Lee, S.T. (2004). Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process. Int. J. Hydrogen Energy, 29(11), 1133 - 1140. https://doi.org/10.1016/j.ijhydene.2003.08.017

Tsavkelova, E.A., & Netrusov, A.I. (2012). Biogas production from cellulose-containing substrates: A review. Applied Biochemistry and Microbiology, 48(5), 421 - 433. https://doi.org/10.1134/S0003683812050134

Published
2020-12-27
How to Cite
Mikheeva, E. R., Katraeva, I. V., & Vorozhtsov, D. L. (2020). Biohydrogen production from milk whey by continuous dark anaerobic fermentation in apparatus of two types: start-up stage. Chemical Safety Science, 4(2), 226 - 239. https://doi.org/10.25514/CHS.2020.2.18016
Section
Utilization and biodegradation of wastes