STUDY OF BIOLOGICAL ABSORPTION OF HEAVY METALS BY PHYTOREMEDIATION PLANT JERUSALEM ARTICHOKE (HELIANTHUS TUBEROSUS L.)
Abstract
Phytoremediation is generally accepted to be one of the simple and most effective solutions of the problem of rehabilitation of soil contaminated with heavy metals. In this work, it is proposed to apply Jerusalem artichoke (Helianthus tuberosus L.) as a phytoremediant plant for soil remediation in Tajikistan. The X-ray fluorescence method has been used to analyze the content of heavy metals and As in the phytoremediant and in the soil of the plant habitat. The values of biological absorption coefficient of heavy metals absorbed by different parts of the plant have been calculated. A significant uptake of Fe, Co, Cr, Mn, V, and Sr elements in different parts of the plant has been observed along with a weak capture of Pb, As, Zn, Ni, and Ti elements, while the absorption coefficient values for Cu are approaching 1. In general, a principal possibility of applying Jerusalem artichoke as a phytoremediant for rehabilitation of soils contaminated with heavy metals has been established. Recommendations on using this plant for remediation of soil polluted with various types of heavy metals are given.
References
Ghosh M., Singh S.P. // Asian Journal of Energy and Environment. 2005. V. 6. No. 4. P. 214.
Tangahu B.V., Abdullah S.R.S., Basri H. et al. // International Journal of Chemical Engineering. 2011. V. 2011. Article ID 939161. DOI:10.1155/2011/939161.
Kireeva N.A., Grigoriadi A.S., Bagautdinov F.Ya. // Teoreticheskiye problem ekologii [Theoretical problems of ecology]. 2011. No. 3. P. 4 [in Russian].
Titov A.F., Kaznina N.M., Talanova V.V. Heavy metals and plants. Petrozavodsk: Inst. Biologii KarNTs RAN, 2014. 194 p. [in Russian].
Grigoriev A.A., Borodikhin A.S., Rudenko O.V., Sova Yu.A. // Sovremennye problemy nauki i obrazovaniya [Modern problems of science and education]. 2013. No. 6 [in Russian].
Kundas S.P., Gishkelyuk I.A. // Proceedings of International Conference Strategy of recovery and sustainable development of the affected regions, Minsk, April 19–21, 2006. P. 82 [in Russian].
Kundas S.P., Gishkelyuk I.A. // Ekologicheskii vestnik [Ecology bulletin]. 2007. No. 1. P. 62 [in Russian].
Novik O.B., Osta M.K., Khublaryan M.G. Physical and mathematical modeling in amelioration. Moscow; Kolos, 1978. P. 167 [in Russian].
DeVries F.W.T.P., vanTaar H.H. Simulation of plant growth and crop production. Wageningen: Centre for Agr. Publishing and Documentation, 1982.
Poluektov R.A., Kumakov V.A., Vasilenko G.V. // Fiziologiya rastenii [Plant physiology]. 1997. V. 44. No 1. P. 68 [in Russian].
http://www.topinambur.net/pitatelnaya_cennost/mineralniy_sostav.html (accessed 17.11.2018).
Partoev K., Saidaliev N.Kh. // Mezhdunarodnyi zhurnal prikladnykh i fundam. issledovanii [International journal of applied and basic research]. 2016. No. 12. P. 1676 [in Russian].
Abdullaev S.F., Abdurasulova N.A., Nazarov B.I. et al. // Doklady akademii nauk respubliki Tajikistan [Proceedings of Academy of Science of the Republic of Tajikistan]. 2011. V. 54. No. 9. P. 746 [in Russian].
Abdullaev S.F., Nazarov B.I., Maslov V.A. et al. // Optika atmosfery i okeana [Optics of atmosphere and ocean]. 2013. V. 26. No. 03. P. 187 [in Russian].
Abdullaev S.F., Maslov V.A., Nazarov B.I. et al. // Optika atmosfery i okeana [Optics of atmosphere and ocean]. 2014. V. 27. No. 03. P. 207 [in Russian].
Abdullaev S.F., Maslov V.A., Nazarov B.I. et al. // Optika atmosfery i okeana [Optics of atmosphere and ocean]. 2015. V. 28. No. 02. P. 143 [in Russian].
Abdullaev S.F., Maslov V.A., Nazarov B.I. et al. // Optika atmosfery i okeana [Optics of atmosphere and ocean]. 2015. V. 28. No. 03. P. 246 [in Russian].
Copyright (c) 2019 S. F. Abdullaev, N. M. Safaraliev, and K. Partoev

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.