Bisphenol A migration from reusable drinking bottles. Case study of Russian market

Keywords: bisphenol A, food plastic, migration from packing materials, disruption of endocrine system, excretion from the body

Abstract

This article presents the results of a study on the migration of bisphenol A (BPA) from polycarbonate reusable water bottles into water. Bisphenol A refers to substances that disrupt the endocrine system. Despite the growing consumption of polycarbonate plastic, the migration of Bisphenol A from food containers is not regulated in Russia. The article emphasizes that BPA can migrate from food containers to food, which is the main source of BPA intake into the human body. Given the increasing use of plastic food and beverage containers, it is important to investigate the migration of BPA into beverages and food products. The data obtained show that, despite the wide variation, the BPA release levels from the sample bottles in question do not exceed the maximum allowable BPA release level from containers set by the European Union. The data obtained also do not exceed the values established by domestic regulations in different environments. The article discusses the peculiarities of BPA toxicology, body reactions, excretion methods, and the importance of attention to microdoses of contamination.

References

https://www.cdc.gov/biomonitoring/BisphenolA_FactSheet.html (accessed 01.08.2021)

https://www.niehs.nih.gov/health/materials/bisphenol_a_bpa_508.pdf (accessed 01.08.2021)

Evans, S.F., Kobrosly, R.W., Barrett, E.S., Thurston, S.W., Calafat, A.M., Weiss, B., Stahlhut, R., Yolton, K., & Swan, S.H. (2014). Prenatal bisphenol A exposure and maternally reported behavior in boys and girls. Neurotoxicology, 45, 91–99. https://doi.org/10.1016/j.neuro.2014.10.003.

Roen, E.L., Wang, Y., Calafat, A.M., Wang, S., Margolis, A., Herbstman, J., Hoepner, L.A., Rauh, V., & Perera, F.P. (2015). Bisphenol A exposure and behavioral problems among inner city children at 7–9 years of age. Environ. Res., 142, 739–745. https://doi.org/10.1016/j.envres.2015.01.014.

Ejaredar, M., Lee, Y., Roberts, D.J., Sauve, R., & Dewey, D. (2017). Bisphenol A exposure and children's behavior: A systematic review. J. Expo Sci. Environ. Epidemiol., 27(2), 175–183. https://doi.org/10.1038/jes.2016.8.

Braun, J.M., Lanphear, B.P., Calafat, A.M., Deria, S., Khoury, J., Howe, C.J., & Venners, S.A. (2014). Early-life bisphenol a exposure and child body mass index: a prospective cohort study. Environ Health Perspect., 122(11),1239–1245. https://doi.org/10.1289/ehp.1408258.

Wiersielis, K.R., Samuels, B.A., & Roepke, T.A. (2020). Perinatal exposure to bisphenol A at the intersection of stress, anxiety, and depression. Neurotoxicol. Teratol., 79, 106884. https://doi.org/10.1016/j.ntt.2020.106884.

Vandenberg, L.N., Hauser, R., Marcus, M., Olea, N., & Welshons, W.V. (2007). Human exposure to bisphenol A (BPA). Reprod. Toxicol., 24(2),139–177. https://doi.org/10.1016/j.reprotox.2007.07.010

Bisphenol A (BPA): world market review of 2021 and 2030 perspectives. https://marketpublishers.ru/report/industry/chemicals_petrochemicals/bisphenol_a_world_market_outlook_n_forecast.html (accessed 01.08.2021) (in Russ.)

Carwile, J.L., Luu, H.T., Bassett, L.S., Driscoll, D.A., Yuan, C., Chang, J.Y., Ye, X., Calafat, A.M., & Michels, K.B. (2009) Polycarbonate bottle use and urinary bisphenol A concentrations. Environ Health Perspect., 117(9),1368–1372. https://doi.org/10.1289/ehp.0900604

Markova, O.L., Yeremin, G.B., Zaritskaya, E.V., Ganichev, P.A., & Petrova, M.D. Bisphenol-a migration from polymer packaging material to bottled water and Foodstuffs. International study findings. Analytical review. XV Conference, Future of Russia. https://cyberleninka.ru/article/n/migratsiya-bisfenola-a-iz-polimernyh-upakovochnyh-materialov-v-butilirovannuyu-vodu-i-produkty-pitaniya-rezultaty-mezhdunarodnyh/viewer (accessed 01.08.2021) (in Russ.)

Hygienic Standard 2.2.5.1313-03 “Maximum permissible concentrations of toxic chemicals in the air of working area”. http://docs.cntd.ru/document/557235236 (accessed 01.08.2021) (in Russ.)

Hygienic Standard 2.1.5.1315-03 “Maximum permissible concentrations of toxic chemicals in water for food and householding use”. http://docs.cntd.ru/document/901862249 (accessed 01.08.2021) (in Russ.)

Commission regulation (EU) No 10/2011 of 14 January 2011; amendment Commission regulation (EU) 2018/213 of 12 February 2018

Feshin, D.B., Brodsky, E.S., Sergeev, O.V., & Speranskaya, O.A. (2012). Health impact of toxic chemical – chemicals in food. Case of Bisphenol A. http://www.myshared.ru/slide/484824/ (accessed 01.08.2021) (in Russ.)

EFSA. (2015). Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA Journal, 13(1), 3978. https://doi.org/10.2903/j.efsa.2015.3978

Kawamura, Y., Koyano, Y., Takeda, Y., & Yamada, T. (1998). Migration of Bisphenol A from Polycarbonate Products. Journal of The Food Hygienic Society of Japan (shokuhin Eiseigaku Zasshi), 39, 206-212. https://doi.org/10.3358/shokueishi.39.3_206

Biedermann-Brem, S.,Grob, K., & Fjeldal,P. (2008). Release of bisphenol A from polycarbonate baby bottles: Mechanisms of formation and investigation of worst case scenarios. European Food Research and Technology. 227. 1053–1060. https://doi.org/10.1007/s00217-008-0819-9

Biles, J. E., McNeal, T. P., Begley, T. H., & Hollifield, H. C. (1997).Determination of Bisphenol-A in Reusable Polycarbonate Food-Contact Plastics and Migration to Food-Simulating Liquids. Journal of Agricultural and Food Chemistry, 45(9), 3541–3544. https://doi.org/10.1021/jf970072i

Kubwabo, C., Kosarac, I., Stewart, B., Gauthier, B.R., Lalonde, K., & Lalonde, P.J. (2009). Migration of bisphenol A from plastic baby bottles, baby bottle liners and reusable polycarbonate drinking bottles. Food Addit. Contam. Part A Chem. Anal. Control Expo Risk Assess., 26(6), 928–937. https://doi.org/10.1080/02652030802706725

Welshons, W.V., Nagel, S.C., & vom Saal, F.S. (2006) Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology, 147(6 Suppl), S56–S69. https://doi.org/10.1210/en.2005-1159

Eltoukhy, A., Jia, Y., Nahurira, R., Abo-Kadoum, M.A., Khokhar, I., Wang, J., & Yan, Y. (2020). Biodegradation of endocrine disruptor Bisphenol A by Pseudomonas putida strain YC-AE1 isolated from polluted soil, Guangdong, China. BMC Microbiol., 20(1), 11. https://doi.org/10.1186/s12866-020-1699-9

Fent, G., Hein, W.J., Moendel, M.J., & Kubiak, R. (2003). Fate of 14C-bisphenol A in soils. Chemosphere, 51(8), 735–746. https://doi.org/10.1016/s0045-6535(03)00100-0

Im, J. & Löffler, F.E.(2016). Fate of Bisphenol A in Terrestrial and Aquatic Environments. Environ. Sci. Technol., 50(16), 8403–8416. https://doi.org/10.1021/acs.est.6b00877

World Health Organization & Food and Agriculture Organization of the United Nations. (‎2011)‎. Joint FAO/WHO expert meeting to review toxicological and health aspects of bisphenol A : final report, including report of stakeholder meeting on bisphenol A, 1-5 November 2010, Ottawa, Canada. World Health Organization. https://apps.who.int/iris/handle/10665/44624

Welshons, W.V., Thayer, K.A., Judy, B.M., Taylor, J.A., Curran, E.M., & vom Saal, F.S. (2003). Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ. Health Perspect., 111, 994–1006. https://doi.org/10.1289/ehp.5494

Huang, R.P., Liu, Z.H., Yuan, S.F., Yin, H., Dang, Z., & Wu, P.X. (2017). Worldwide human daily intakes of bisphenol A (BPA) estimated from global urinary concentration data (2000–2016) and its risk analysis. Environ. Pollut., 230, 143–152. https://doi.org/10.1016/j.envpol.2017.06.026

Manikkam, M., Tracey, R., Guerrero-Bosagna, C., & Skinner, M.K. (2013). Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLOS One, 8(1), e55387. https://doi.org/10.1371/journal.pone.0055387

Sieli, P.T., Jašarevic, E., Warzak, D.A., Mao, J., Ellersieck, M.R., Liao, C., Kannan, K., Collet, S.H., Toutain, P.L., vom Saal, F.S., & Rosenfeld, C.S. (2011). Comparison of serum bisphenol A concentrations in mice exposed to bisphenol A through the diet versus oral bolus exposure. Environ Health Perspect., 119, 1260–1265. https://doi.org/10.1289/ehp.1003385

Al-Hiyasat, A.S., Darmani, H., & Elbetieha, A.M. (2002). Effects of bisphenol A on adult male mouse fertility. European Journal of Oral Sciences, 110, 163–167. https://doi.org/10.1034/j.1600-0722.2002.11201.x

Yamashita, U., Sugiura, & T., Kuroda, E.(2002). Effect of endocrine disrupters on immune responses in vitro. J UOEH, 24(1), 1–10. https://doi.org/10.7888/juoeh.25.365

vom Saal, F.S. & Welshons, W.V. (2006). Large effects from small exposures. II. The importance of positive controls in low-dose research on bisphenol A. Environ Res., 100(1), 50–76. https://doi.org/10.1016/j.envres.2005.09.001

Vandenberg, L.N. (2013). Non-monotonic dose responses in studies of endocrine disrupting chemicals: bisphenol a as a case study. Dose Response, 12, 259–276. https://doi.org/10.2203/dose-response.13-020.Vandenberg

Quesnot, N., Bucher, S., Fromenty, B., & Robin, M.A. (2014). Modulation of metabolizing enzymes by bisphenol a in human and animal models. Chem. Res. Toxicol., 27(9),1463–1673. https://doi.org/10.1021/tx500087p

Ji, L., Ji, S., Wang, C., & Kepp, K.P. (2018). Molecular Mechanism of Alternative P450-Catalyzed Metabolism of Environmental Phenolic Endocrine-Disrupting Chemicals. Environ. Sci. Technol., 52(7), 422–4431. https://doi.org/10.1021/acs.est.8b00601

Kurebayashi, H., Betsui, H., & Ohno, Y.(2003). Disposition of a low dose of 14C-bisphenol A in male rats and its main biliary excretion as BPA glucuronide. Toxicol. Sci., 73(1), 17–25. https://doi.org/10.1093/toxsci/kfg040

Dankers, A.C., Roelofs, M.J., Piersma, A.H., Sweep, F.C., Russel, F.G., van den Berg, M., van Duursen. M.B., & Masereeuw R. (2013). Endocrine disruptors differentially target ATP-binding cassette transporters in the blood-testis barrier and affect Leydig cell testosterone secretion in vitro. Toxicol Sci., 136(2), 382–391. https://doi.org/10.1093/toxsci/kft198

Völkel, W., Colnot, T., Csanády, G.A., Filser. J.G., & Dekant W. (2002). Metabolism and kinetics of bisphenol a in humans at low doses following oral administration. Chem. Res. Toxicol., 15(10), 1281–1287. https://doi.org/10.1021/tx025548t

Domoradzki, J.Y., Pottenger, L.H., Thornton, C.M., Hansen, S.C., Card, T.L., Markham, D.A., Dryzga, M.D., Shiotsuka, R.N., & Waechter, J.M. Jr. (2003). Metabolism and pharmacokinetics of bisphenol A (BPA) and the embryo-fetal distribution of BPA and BPA-monoglucuronide in CD Sprague-Dawley rats at three gestational stages. Toxicol. Sci., 76(1), 21–34. https://doi.org/10.1093/toxsci/kfg206

Masanov, A.Yu. (2017). Review and perspectives of polycarbonate market in Russia. http://vestkhimprom.ru/posts/sostoyanie-i-perspektivy-rynka-polikarbonatov-v-rossii (accsessed 01.08.2021) (in Russ.)

Rochester, J.R. & Bolden, A.L.(2015). Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes. Environ. Health Perspect., 123(7), 643–650. https://doi.org/10.1289/ehp.1408989

Pal, S., Sarkar, K., Nath, P.P., Mondal, M., Khatun, A., & Paul, G. (2017). Bisphenol S impairs blood functions and induces cardiovascular risks in rats. Toxicol. Rep., 4, 560–565. https://doi.org/10.1016/j.toxrep.2017.10.006

Published
2021-12-17
How to Cite
SperanskayaО. A., & Gurskiy, Y. G. (2021). Bisphenol A migration from reusable drinking bottles. Case study of Russian market. Chemical Safety Science, 5(2), 186 - 199. https://doi.org/10.25514/CHS.2021.2.20012
Section
Chemical safety of food products