Sensitivity of MIS Capacitors with Palladium Electrode to Aromatic Nitro Compounds Vapor
Abstract
The temperature and time modes of the high-energy aromatic nitro compound vapor pyrolysis have been studied. The optimal conditions for reliable concentration measurement of gas-phase decomposition products of nitro compound molecules using MIS capacitors based on palladium-dielectric-silicon structures were determined. It has been established that the sensitivity of MIS sensors to nitroaromatic compound vapor appears when a gaseous sample is exposed to a temperature of 400°C and reaches a maximum at 500 – 550°C with an average duration of vapor heating of 1 s.
References
Chachkov, D.V. (2005). Influence of the molecular structure on the competition features of various primary act mechanisms of the C-nitro compounds gas-phase decomposition according to the results of quantum chemical calculations (Ph.D. dissertation). Kazan: Kazan State Technological University (in Russ.).
Pat. 2547576, Russian Federation, 2015.
Pat. 139183, Russian Federation, 2014.
Pat. 2577781, Russian Federation, 2016.
Pat. 140352, Russian Federation, 2014.
Pat. 2460067, Russian Federation, 2012.
Pat. 159783, Russian Federation, 2014.
Shaltaeva, Yu., Podlepetsky, B., & Pershenkov, V. (2017). Detection of gas traces using semiconductor sensors, ion mobility spectrometry, and mass spectrometry. European Journal of Mass Spectrometry, 23(4), 217–224. https://doi.org/10.1177/1469066717720795
Lakkis, S., Younes, R., Alayli, Y., & Sawan, M. (2014). Review of recent trends in gas sensing technologies and their miniaturization potential. Sens. Rev., 34, 24–35. https://doi.org/10.1108/SR-11-2012-724
Zyryanov, G.V., Kopchuk, D.S., Kovalev, I.S., Nosova, E.V., Rusinov, V.L., & Chupakhin, O.N. (2014). Chemosensors for detection of nitroaromatic compounds (explosives). Russ. Chem. Rev., 83(9), 783–819 (in Russ). https://doi.org/10.1070/RC2014v083n09ABEH004467
Udrea, F., Sunglyul, M., Gardner, J.W., Park, J., Ali, S., Choi, Y., Guha, P., Vieira, S., Kim, H., & Kim, S.H. (2007). Three technologies for a smart miniaturized gas-sensor: SOI CMOS, micromachining, and CNTs-Challenges and performance. Tech. Dig. Int. Electron Devices Meet. IEEE. P. 831–834. https://doi.org/10.1109/IEDM.2007.4419077
Oprea, A., Barsan, N., & Weimar, U. (2009) Work function changes in gas sensitive materials: Fundamentals and applications. Sens. Actuators B Chem., 142, 470–493. https://doi.org/10.1016/j.snb.2009.06.043
Lundstrom, I., Sundgren, H., Winquist, F., Eriksson, M., Krants-Rulcker, C., & Lloyd-Spets, A. (2007). Twenty-five years of field effect gas sensor research in Linkoping. Sens. Actuators B Chem., 121, 247–262. https://doi.org/10.1016/j.snb.2006.09.046
Lundstrom, I., Shivaraman, M.S., Svensson, C., & Lundkvist, L. (1975). Hydrogen sensitive MOS field-effect transistor. Applied Physics Letters, 26, 55–57. https://doi.org/10.1063/1.88053
Andersson, M., Pearce, R., & Lloyd Spetz, A. (2013) New generation SiC based field effect transistor gas sensors. Sens. Actuators B Chem., 179, 95–106. https://doi.org/10.1016/j.snb.2012.12.059
Irkha, V.I., & Konstantinov, K.V. (2013). MIS-Transistors as a Detectors of Gases. Proceedings of the O.S. Popov ОNAT, 2, 62–65 (in Russ). https://biblio.suitt.edu.ua/bitstream/handle/123456789/91/4.%20Ирха%2C%20Константинов%20%282%29.pdf?sequence=1&isAllowed=y
Shamin, A.A. & Golovyashkin, A.N. (2014). Modeling the sensitivity of a gas sensor based on an MIS transistor. Young Scientist, 9(68), 228–231 (in Russ). https://www.elibrary.ru/item.asp?id=21639251
Bolodurin, B.A., Mikhailov, A.A., Filipchuk, D.V., Etrekova, M.O., Korchak, V.Yu., Pomazan, Yu.G., Litvinov, A.V., & Nozdrya, D.A. (2018). Comprehensive Research on the Response of MIS Sensors of Pd‒SiO2‒Si and Pd‒Ta2O5‒SiO2‒Si Structures to Various Gases in Air. Russian Journal of General Chemistry, 88(12), 2732–2739. https://doi.org/10.1134/S1070363218120435
Samotaev, N., Oblov, K., Litvinov, A., & Etrekova, M. (2019). SnO2-Pd as a Gate Material for the Capacitor Type Gas Sensor. Proceedings of 8th GOSPEL Workshop, 14(1), 10, 153–156. https://doi.org/10.3390/proceedings2019014010
Etrekova, M., Litvinov, A., Samotaev, N., Filipchuk, D., Oblov, K., & Mikhailov, A. (2020) Investigation of Selectivity and Reproducibility Characteristics of Gas Capacitive MIS Sensors. Proceedings of the International youth conference on electronics, telecommunications and information technologies YETI, 87–95. https://doi.org/10.1007/978-3-030-58868-7_10
Samotaev, N., Oblov, K., Etrekova, M., Veselov, D., Ivanova, A., & Litvinov, A. (2019). Improvement of Field Effect Capacity Type Gas Sensor Thermo Inertial Parameters by Using Laser Micromilling Technique. Materials ICMMPM, 977, 256–260. https://doi.org/10.4028/www.scientific.net/MSF.977.256
Litvinov, A.V., Samotaev, N.N., Etrekova, M.O., & Mikhailov, A.A. (2019). The detection of nitro compounds by using MIS-sensor. IOP Conf. Series: Materials Science and Engineering, 498, 012020. https://doi.org/10.1088/1757-899X/498/1/012020
Samotaev, N., Litvinov, A., Etrekova, M., Oblov, K., Filipchuk, D., & Mikhailov, A. (2020). Prototype of Nitro Compound Vapor and Trace Detector Based on a Capacitive MIS Sensor. Sensors (Switzerland), 20(5), 1514. https://doi.org/10.3390/s20051514
Samotaev, N.N., Litvinov, A.V., Podlepetsky, B.I., Etrekova, M.O., Philipchuk, D.V., Mikhailov, A.A., Bukharov, D.G., & Demidov, V.M. (2019) Methods of measuring the output signals of the gas-sensitive sensors based on MOS-capacitors. Sensors & System, 5(236), 47–53 (in Russ). https://www.elibrary.ru/item.asp?id=38532131
Donarelli, M., Prezioso, S., Perrozzi, F., Bisti, F., Nardone, M., Giancaterini, L., Cantalini, C., & Ottaviano, L. (2015). Response to NO2 and other gases of resistive chemically exfoliated MoS-based gas sensors. Sens. Actuators B Chem., 207, 602–613. https://doi.org/10.1016/j.snb.2014.10.099
Kwoka, M., & Szuber, J. (2020). Studies of NO2 gas-sensing characteristics of a novel room-temperature surface-photovoltage gas sensor device. Sensors (Switzerland), 20, 408. https://doi.org/10.3390/s20020408
Nguyen, V.B. (2014) Molecular structure and mechanisms of reactions of gas-phase decomposition of anion and cation radicals of some C-, N-, O-nitro compounds according to quantum chemical calculations (Ph.D. dissertation). Kazan: Kazan State Technological University (in Russ).
Copyright (c) 2022 Maya O. Etrekova, Nikolay N. Samotaev, Artur V. Litvinov, Alexey A. Mikhailov, and Boris I. Podlepetsky

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.