Effect of thermal oxidation on the crystalline phase of polypropylene in composites with single-walled carbon nanotubes

  • Olga M. Palaznik N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
  • Polina M. Nedorezova N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
  • Vadim G. Krasheninnikov N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia https://orcid.org/0000-0003-1869-7267
  • Dmitry P. Shashkin N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
Keywords: polypropylene, single-walled carbon nanotubes, polymerization, thermal oxidation, melting temperature, degree of crystallinity

Abstract

The oxidation of polypropylene (PP) in composites with single-walled carbon nanotubes (SWCNTs) has been studied. Composites were prepared in bulk propylene using a homogeneous catalytic system rac-Me2Si(2-Me-4PhInd)2ZrCl2 activated with methylalumoxane. It has been shown by DSC that the introduction of SWCNTs into the polymer matrix increases the thermal-oxidative stability and significantly affects the nature of the change in the crystalline phase during oxidation. It is shown that the polymer in the composite during oxidation is more homogeneous than pure PP, as indicated by a narrow melting peak characterized by a higher melting temperature.

References

Zeynalov, E.B., Agaguseynova, M.M., & Salmanova, N.I. (2020). Effect of nanocarbon additives on stability of polymer composites. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. [Russ. J. Chem. & Chem. Tech.], 63(11), 4 - 12. https://doi.org/10.6060/ivkkt.20206311.6213

Yuan, B., Zhan, Y., Sheng, S., Li, P., Zhao, H., & He, Y. (2020). Exploration on the influence mechanism of heteroatom doped graphene on thermal oxidative stability and decomposition of polypropylene. Materials Today Communications, 25, 101446. https://doi.org/10.1016/j.mtcomm.2020.101446

He, Y., Fan, D., Chen, J., Zhao, J., Lv, Y., Huang, Y., Li, G., & Kong, M. (2022). Multiple stabilization roles of thermally reduced graphene oxide for both thermo- and photo-oxidation of polypropylene: deter, delay, and defend. Polymers for Advanced Technologies, 33(2), 505 - 513. https://doi.org/10.1002/pat.5532

Jun, Y-S., Um, J.G., Jiang, G., & Yu, A. (2018). A study on the effects of graphene nano-platelets (GnPs) sheet sizes from a few to hundred microns on the thermal, mechanical, and electrical properties of polypropylene (PP)/GnPs composites. Express Polymer Letters, 12(10), 885 - 897. https://doi.org/10.3144/expresspolymlett.2018.76

Kapachauskene, Ya.P., Yurevichene, R.P., & Shlyapnikov, Yu.A. (1967). Kinetics and catalysis, 8(1), 212.

Verdejo, R., Bernal, M.M., Romasanta, L.J., & Lopez'Man'chado, M.A. (2011). Graphene filled polymer nanocomposites. J. Mater. Chem., 21(10), 3301 - 3310. https://doi.org/10.1039/C0JM02708A

Shlyapnikov, Yu.A., Kiryushkin, S.G., & Maryin, A.P. (1988). Antioxidant stabilization of polymers. M.: Chemistry (in Russ.).

Polschikov, S.V., Nedorezova, P.M., Klyamkina, A.N., Krasheninnikov, V.G., Monakhova, T.V., Shchegolikhin, A.N., Popov, A.A., Margolin, A.L., & Muradyan, V.E. (2013). Composite materials based on fullerenes C60/C70 and polypropylene prepared via in situ polymerization. Polymer Science, Series B, 55(5 - 6), 286 - 293. https://doi.org/10.1134/S1560090413050059

Galimov, D.I., Bulgakov, R.G., & Gazeeva, D.R. (2011). Reactivity of fullerene C60 towards peroxy radicals generated by liquid-phase oxidation of cumene and ethylbenzene with oxygen. Russian Chemical Bulletin, 60(10), 2107 - 2109. https://doi.org/10.1007/s11172-011-0323-4

Watts, P., Fearon, P., Hsu, W., Billingham, N., Kroto, H., & Walton, D. (2003). Carbon nanotubes as polymerantioxidants. J. Mater. Chem., 13(3), 491 - 495. https://doi.org/10.1039/B211328G

Zeinalov, E.B., & Koßmehl, G. (2001). Fullerene C60 as an antioxidant for polymers. Polym. Degrad. Stab., 71(2), 197 - 202. https://doi.org/10.1016/S0141-3910(00)00109-9

Yang, J., Huang, Y., Lu, Y., Li, S., Yang, Q., & Li, G. (2015). The synergistic mechanism of thermally reduced graphene oxide and antioxidant in improving the thermo-oxidative stability of polypropylene. Carbon, 89, 340 - 349. https://doi.org/10.1016/j.carbon.2015.03.069

Nedorezova, P.M., Shevchenko, V.G., Shchegolikhin, A.N., Tsvetkova, V.I., & Korolev, Yu.M. (2004). Polymerizationally filled conducting polypropylene-graphite composites prepared with highly efficient metallocene catalysts. Polymer Science, Series A, 46(3), 242 - 249.

Koval’chuk, A.A., Nedorezova, P.M., Klyamkina, A.N., Aladyshev, A.M., Shchegolikhin, A.N., & Shevchenko, V.G. (2008). Synthesis and properties of polypropylene/multiwall carbon nanotube composites. Macromolecules, 41(9), 3149 - 3156. https://doi.org/10.1021/ma800297e

Pat. 4241112, USA, 1980.

Dyachkovsky, F.S., & Novokshonova, L.A. (1984). Synthesis and properties of polymerization-filled polyolefins. Uspekhi Khimii, 53(2), 200 - 222 (in Russ). https://www.uspkhim.ru/php/getFT.phtml?jrnid=rc&paperid=3031&year_id=1984

Monakhova, T.V., Nedorezova, P.M., Bogayevskaya, T.A., Tsvetkova, V.I., & Shlyapnikov, Yu.A. (1988). Thermooxidative destruction of polypropylene-graphite composites. Polymer Science U.S.S.R., 30(11), 2589 - 2594. https://doi.org/10.1016/0032-3950(88)90031-7

Pol'shchikov, S.V., Klyamkina, A.N., Krashenninikov, V.G., Aladyshev, A.M., Nedorezova, P.M., Shchegolikhin, A.N., Monakhova, T.V., Shevchenko, V.G., Sinevich, E.A., & Muradyan, V.E. (2013). Composite materials based on graphene nanoplatelets and polypropylene derived via in situ polymerization. Nanotechnologies in Russia, 8(1-2), 69 - 80. https://doi.org/10.1134/S1995078013010114

Monakhova, T.V., Popov, A.A., Margolin, A.L., Nedorezova, P.M., & Pol’shchikov, S.V. (2014). Thermooxidation and chemiluminescence of polypropylene-graphite compositions. Russian Journal of Physical Chemistry B, 8(6), 874 - 880. https://doi.org/10.1134/S1990793114110062

Achaby, M.E., Arrakhiz, F.-E., Vaudreuil, S., Qaiss, A.K., Bousmina, M., & Fassi-Fehri, O. (2012). Mechanical, Thermal, and Rheological Properties of Graphene-Based Polypropylene Nanocomposites Prepared by Melt Mixing. Polymer Composites, 33(5), 733 - 744. https://doi.org/10.1002/pc.22198

Margolin, A.L., Monakhova, T.V., Nedorezova, P.M., Klyamkina, A.N., & Polschikov, S.V. (2018). Effects of graphene on thermal oxidation of isotactic polypropylene. Polymer Degradation and Stability, 156, 59 - 65. https://doi.org/10.1016/j.polymdegradstab.2018.07.029

Palaznik, O.M., Nedorezova, P.M., Krasheninnikov, V.G., Shevchenko, V.G., Monakhova, & T.V., Arbuzov, A.A. (2021). Synthesis and properties of polymerization-filled composites based on polypropylene and single-wall carbon nanotubes. Polymer Science, Series B, 63(2), 161 - 174. https://doi.org/10.1134/S1560090421020093

Godovsky Yu.K. (1982). Thermophysical methods for studying polymers. M: Chemistry (in Russ.).

Turner-Jones, A., Aizewood, J.M., & Beckert, D.R. (1964). Crystalline forms of isotactic polypropylene. Makromol. Chem., 75(1), 134 - 158. https://doi.org/10.1002/macp.1964.020750113

Turner-Jones, A. (1971). Development of the γ-crystal form in random copolymers of propylene and their analysis by DSC and x-ray methods. Polymer, 12(8), 487 - 508. https://doi.org/10.1016/0032-3861(71)90031-0

Martynov, M.A., & Valegzhanina, K.A. (1966). Changes of the crystalline structure of polypropylene in the process of thermoaging. Polymer Science, 8(3), 376 - 379 (in Russ.). http://polymsci.ru/static/Archive/1966/VMS_1966_T8_3/VMS_1966_T8_3_376-379.pdf

Shibryaeva, L.S., Shatalova, O.V., Krivandin, A.V., Korzh, N.N., Popov, A.A., & Petrov, O.B. (2003). Structural transformations in the oxidation of isotactic polypropylene. Polymer Science, Series A, 45(3), 244 - 253.

Emanuel, N.M., & Buchachenko, A.L. (1987). Chemical Physics of Polymer Degradation and Stabilization., The Netherland, Utrecht: VNU Science Press.

Fisher, D., & Mulhaupt, R. (1994). The influence of regio- and stereoirregularities on the crystallization behaviour of isotactic poly(propylene)s prepared with homogeneous group IVa metallocene/methylaluminoxane Ziegler-Natta catalysts. Makromol. Chem. Phys., 195(4), 1433 - 1441. https://doi.org/10.1002/macp.1994.021950426

Shibryaeva, L.S., Shatalova, O.V., Krivandin, A.V., & Rishina, L.A. (2011). Thermal oxidation of isotactic polypropylene synthesized with a metallocene catalyst. Polymer Science, Series B, 53(11 - 12), 618 - 625. https://doi.org/10.1134/S1560090411120050

Published
2022-12-11
How to Cite
Palaznik, O. M., Nedorezova, P. M., Krasheninnikov, V. G., & Shashkin, D. P. (2022). Effect of thermal oxidation on the crystalline phase of polypropylene in composites with single-walled carbon nanotubes. Chemical Safety Science, 6(2), 48 - 64. https://doi.org/10.25514/CHS.2022.2.23004
Section
Materials with new functional properties