Effect of thermal oxidation on the crystalline phase of polypropylene in composites with single-walled carbon nanotubes
Abstract
The oxidation of polypropylene (PP) in composites with single-walled carbon nanotubes (SWCNTs) has been studied. Composites were prepared in bulk propylene using a homogeneous catalytic system rac-Me2Si(2-Me-4PhInd)2ZrCl2 activated with methylalumoxane. It has been shown by DSC that the introduction of SWCNTs into the polymer matrix increases the thermal-oxidative stability and significantly affects the nature of the change in the crystalline phase during oxidation. It is shown that the polymer in the composite during oxidation is more homogeneous than pure PP, as indicated by a narrow melting peak characterized by a higher melting temperature.
References
Zeynalov, E.B., Agaguseynova, M.M., & Salmanova, N.I. (2020). Effect of nanocarbon additives on stability of polymer composites. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. [Russ. J. Chem. & Chem. Tech.], 63(11), 4 - 12. https://doi.org/10.6060/ivkkt.20206311.6213
Yuan, B., Zhan, Y., Sheng, S., Li, P., Zhao, H., & He, Y. (2020). Exploration on the influence mechanism of heteroatom doped graphene on thermal oxidative stability and decomposition of polypropylene. Materials Today Communications, 25, 101446. https://doi.org/10.1016/j.mtcomm.2020.101446
He, Y., Fan, D., Chen, J., Zhao, J., Lv, Y., Huang, Y., Li, G., & Kong, M. (2022). Multiple stabilization roles of thermally reduced graphene oxide for both thermo- and photo-oxidation of polypropylene: deter, delay, and defend. Polymers for Advanced Technologies, 33(2), 505 - 513. https://doi.org/10.1002/pat.5532
Jun, Y-S., Um, J.G., Jiang, G., & Yu, A. (2018). A study on the effects of graphene nano-platelets (GnPs) sheet sizes from a few to hundred microns on the thermal, mechanical, and electrical properties of polypropylene (PP)/GnPs composites. Express Polymer Letters, 12(10), 885 - 897. https://doi.org/10.3144/expresspolymlett.2018.76
Kapachauskene, Ya.P., Yurevichene, R.P., & Shlyapnikov, Yu.A. (1967). Kinetics and catalysis, 8(1), 212.
Verdejo, R., Bernal, M.M., Romasanta, L.J., & Lopez'Man'chado, M.A. (2011). Graphene filled polymer nanocomposites. J. Mater. Chem., 21(10), 3301 - 3310. https://doi.org/10.1039/C0JM02708A
Shlyapnikov, Yu.A., Kiryushkin, S.G., & Maryin, A.P. (1988). Antioxidant stabilization of polymers. M.: Chemistry (in Russ.).
Polschikov, S.V., Nedorezova, P.M., Klyamkina, A.N., Krasheninnikov, V.G., Monakhova, T.V., Shchegolikhin, A.N., Popov, A.A., Margolin, A.L., & Muradyan, V.E. (2013). Composite materials based on fullerenes C60/C70 and polypropylene prepared via in situ polymerization. Polymer Science, Series B, 55(5 - 6), 286 - 293. https://doi.org/10.1134/S1560090413050059
Galimov, D.I., Bulgakov, R.G., & Gazeeva, D.R. (2011). Reactivity of fullerene C60 towards peroxy radicals generated by liquid-phase oxidation of cumene and ethylbenzene with oxygen. Russian Chemical Bulletin, 60(10), 2107 - 2109. https://doi.org/10.1007/s11172-011-0323-4
Watts, P., Fearon, P., Hsu, W., Billingham, N., Kroto, H., & Walton, D. (2003). Carbon nanotubes as polymerantioxidants. J. Mater. Chem., 13(3), 491 - 495. https://doi.org/10.1039/B211328G
Zeinalov, E.B., & Koßmehl, G. (2001). Fullerene C60 as an antioxidant for polymers. Polym. Degrad. Stab., 71(2), 197 - 202. https://doi.org/10.1016/S0141-3910(00)00109-9
Yang, J., Huang, Y., Lu, Y., Li, S., Yang, Q., & Li, G. (2015). The synergistic mechanism of thermally reduced graphene oxide and antioxidant in improving the thermo-oxidative stability of polypropylene. Carbon, 89, 340 - 349. https://doi.org/10.1016/j.carbon.2015.03.069
Nedorezova, P.M., Shevchenko, V.G., Shchegolikhin, A.N., Tsvetkova, V.I., & Korolev, Yu.M. (2004). Polymerizationally filled conducting polypropylene-graphite composites prepared with highly efficient metallocene catalysts. Polymer Science, Series A, 46(3), 242 - 249.
Koval’chuk, A.A., Nedorezova, P.M., Klyamkina, A.N., Aladyshev, A.M., Shchegolikhin, A.N., & Shevchenko, V.G. (2008). Synthesis and properties of polypropylene/multiwall carbon nanotube composites. Macromolecules, 41(9), 3149 - 3156. https://doi.org/10.1021/ma800297e
Pat. 4241112, USA, 1980.
Dyachkovsky, F.S., & Novokshonova, L.A. (1984). Synthesis and properties of polymerization-filled polyolefins. Uspekhi Khimii, 53(2), 200 - 222 (in Russ). https://www.uspkhim.ru/php/getFT.phtml?jrnid=rc&paperid=3031&year_id=1984
Monakhova, T.V., Nedorezova, P.M., Bogayevskaya, T.A., Tsvetkova, V.I., & Shlyapnikov, Yu.A. (1988). Thermooxidative destruction of polypropylene-graphite composites. Polymer Science U.S.S.R., 30(11), 2589 - 2594. https://doi.org/10.1016/0032-3950(88)90031-7
Pol'shchikov, S.V., Klyamkina, A.N., Krashenninikov, V.G., Aladyshev, A.M., Nedorezova, P.M., Shchegolikhin, A.N., Monakhova, T.V., Shevchenko, V.G., Sinevich, E.A., & Muradyan, V.E. (2013). Composite materials based on graphene nanoplatelets and polypropylene derived via in situ polymerization. Nanotechnologies in Russia, 8(1-2), 69 - 80. https://doi.org/10.1134/S1995078013010114
Monakhova, T.V., Popov, A.A., Margolin, A.L., Nedorezova, P.M., & Pol’shchikov, S.V. (2014). Thermooxidation and chemiluminescence of polypropylene-graphite compositions. Russian Journal of Physical Chemistry B, 8(6), 874 - 880. https://doi.org/10.1134/S1990793114110062
Achaby, M.E., Arrakhiz, F.-E., Vaudreuil, S., Qaiss, A.K., Bousmina, M., & Fassi-Fehri, O. (2012). Mechanical, Thermal, and Rheological Properties of Graphene-Based Polypropylene Nanocomposites Prepared by Melt Mixing. Polymer Composites, 33(5), 733 - 744. https://doi.org/10.1002/pc.22198
Margolin, A.L., Monakhova, T.V., Nedorezova, P.M., Klyamkina, A.N., & Polschikov, S.V. (2018). Effects of graphene on thermal oxidation of isotactic polypropylene. Polymer Degradation and Stability, 156, 59 - 65. https://doi.org/10.1016/j.polymdegradstab.2018.07.029
Palaznik, O.M., Nedorezova, P.M., Krasheninnikov, V.G., Shevchenko, V.G., Monakhova, & T.V., Arbuzov, A.A. (2021). Synthesis and properties of polymerization-filled composites based on polypropylene and single-wall carbon nanotubes. Polymer Science, Series B, 63(2), 161 - 174. https://doi.org/10.1134/S1560090421020093
Godovsky Yu.K. (1982). Thermophysical methods for studying polymers. M: Chemistry (in Russ.).
Turner-Jones, A., Aizewood, J.M., & Beckert, D.R. (1964). Crystalline forms of isotactic polypropylene. Makromol. Chem., 75(1), 134 - 158. https://doi.org/10.1002/macp.1964.020750113
Turner-Jones, A. (1971). Development of the γ-crystal form in random copolymers of propylene and their analysis by DSC and x-ray methods. Polymer, 12(8), 487 - 508. https://doi.org/10.1016/0032-3861(71)90031-0
Martynov, M.A., & Valegzhanina, K.A. (1966). Changes of the crystalline structure of polypropylene in the process of thermoaging. Polymer Science, 8(3), 376 - 379 (in Russ.). http://polymsci.ru/static/Archive/1966/VMS_1966_T8_3/VMS_1966_T8_3_376-379.pdf
Shibryaeva, L.S., Shatalova, O.V., Krivandin, A.V., Korzh, N.N., Popov, A.A., & Petrov, O.B. (2003). Structural transformations in the oxidation of isotactic polypropylene. Polymer Science, Series A, 45(3), 244 - 253.
Emanuel, N.M., & Buchachenko, A.L. (1987). Chemical Physics of Polymer Degradation and Stabilization., The Netherland, Utrecht: VNU Science Press.
Fisher, D., & Mulhaupt, R. (1994). The influence of regio- and stereoirregularities on the crystallization behaviour of isotactic poly(propylene)s prepared with homogeneous group IVa metallocene/methylaluminoxane Ziegler-Natta catalysts. Makromol. Chem. Phys., 195(4), 1433 - 1441. https://doi.org/10.1002/macp.1994.021950426
Shibryaeva, L.S., Shatalova, O.V., Krivandin, A.V., & Rishina, L.A. (2011). Thermal oxidation of isotactic polypropylene synthesized with a metallocene catalyst. Polymer Science, Series B, 53(11 - 12), 618 - 625. https://doi.org/10.1134/S1560090411120050
Copyright (c) 2022 Olga M. Palaznik, Polina M. Nedorezova, Vadim G. Krasheninnikov, and Dmitry P. Shashkin

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.