Processing of spent mercury-containing ion-exchange resins. II. Hydrogen generation

  • Arseniy V. Artemov National Research Centre “Kurchatov Institute”, Moscow, Russia
  • Mikhail V. Dyubanov Federal State Budgetary Educational Institution of Science Interdepartment Center of Analytical Research in Physics, Chemistry and Biology at the Presidium of the Russian Academy of Sciences, Moscow, Russia; Federal State Budgetary Educational Institution of Higher Education “Russian State University named after A.N. Kosygin (Technology. Design. Art)”, Moscow, Russia
  • Oleg I. Sedlyarov Federal State Budgetary Educational Institution of Higher Education “Russian State University named after A.N. Kosygin (Technology. Design. Art)”, Moscow, Russia
  • Alexander V. Pereslavtsev National Research Centre “Kurchatov Institute”, Moscow, Russia
  • Sergey A. Voshchinin National Research Centre “Kurchatov Institute”, Moscow, Russia
Keywords: mercury-containing waste, plasma processing, hydrogen generation, carbon dioxide reforming of methane, steam reforming of carbon monoxide

Abstract

A new technology for plasma processing of industrial and household waste, including toxic mercury-containing wastes, is proposed. The technology involves catalytic steps of carbon dioxide reforming of methane and steam reforming of carbon monoxide, which provides waste processing along with generation of hydrogen, thermal and electrical energy, and yielding basalt-like slag. The technology implements a closed carbon dioxide cycle. The paper presents data on the composition and amount of pyrogas, the amount of CO2-plasma-forming gas consumed, and the amount of CO2 generated in a gas turbine unit during plasma processing of waste of various morphological compositions.

References

Artemov, A.V., Dubanov, M.V., Pereslavtsev, A.V., Voshchinin, S.A., & Sedlyarov, O.I. (2022). Recycling of spent mercury-containing ion exchange resin. I. High-temperature plasma pyrolysis. Khimicheskaya Bezopasnost’ = Chemical Safety Science, 6(2), 151–159 (in Russ.).

Ivanova, A.S. (2009). Industrial catalysis in lectures. M.: Kalvis (in Russ.).

Artemov, A.V., Bulba, V.A., Krutyakov, Yu.A., Kudrinsky, A.A., Ostry, I.I., Pereslavtsev, A.V., & Voshchinin, S.A. (2010). Catalytic processes of transformation of gaseous products of plasma processing of solid wastes and hydrocarbon raw materials. Russian Chemical Journal, 54(6), 918 (in Russ.).

Artemov, A.V., Pereslavtsev, A.V., Krutyakov, Yu.A., Voshchinin, S.A., Kudrinsky, A.A., Bulba, V.A., & Ostroy, I.I. (2011). Ecological aspects of plasma processing of solid waste. Ecology and Industry of Russia, 9, 2023(in Russ.).

Krylov, O.V. (2000). Carbon dioxide conversion of methane into synthesis gas. Russian Chemical Journal, 44(1), 19–33(in Russ.).

Tomishige, K., Chen, Y.-G., & Fujimoto ,K. (1999). Catalytic Performance and Catalyst Structure of Nickel–Magnesia Catalysts for CO2 Reforming of Methane2. J. of Catalysis, 184(2), 479–490. https://doi.org/10.1006/jcat.1999.2469

Pat. 2349380, Russian Federation, 2009.

Arkatova, L.A., Kharlamova, T.S., & Galaktionova, L.V. (2006). Carbon dioxide conversion of methane on nickel aluminides. J. of Phys.l Chem., 80(8), 1231–1234 (in Russ.).

Crisafulli, C., Scire, S., Minico, S., Solarino, L. (2002). Ni-Ru bimetallic catalysts for the CO2 reforming of methane. Applied Catalysis A: General, 225(1–2), 1–9. https://doi.org/10.1016/S0926-860X(01)00585-3

Shested, J., Jacobsen, C.J.H., Rokni, S., Rostrup-Nielsen, J.R. (2001). Activity and Stability of Molybdenum Carbide as a Catalyst for CO2 Reforming. J. of Catalysis, 201(2), 206–2012. https://doi.org/10.1006/jcat.2001.3255

Krylov, O.V. (2004). Heterogeneous catalysis. M.: Akademkniga (in Russ.).

Hu Y.H., Ruckenstein E. (2004). Catalytic conversion of methane to synthesis gas by partial oxidation and. CO2 reforming. Adv. Synthesis & Catalysis, 48, 297–345. https://doi.org/10.1016/S0360-0564(04)48004-3

Tomishige, K. (2004). Syngas production from methane reforming with CO2/H2O and O2 over nio-mgo solid solution catalyst in fluidized bed reactors. Catalysis Today, 89(4), P. 405–418. http://dx.doi.org/10.1016/j.cattod.2004.01.003.

Fedotov, A.S., Antonov, D.O., Uvarov, V.I. (2014). Synergetic effect in the process of carbon dioxide reforming of methane on porous ceramic Ni-CO membranes. Reports of the Academy of Sciences, 459(3), 309 (in Russ.). https://doi.org/10.7868/S0869565214330123

Artemov, A.V. (2001). Catalysis in industry, 2, 18–23 (in Russ..).

Artemov, A.V., Zhiltsov, V.A., Krutyakov, Yu.A. (2008). Obtaining nanoscale metals by electric discharge in a liquid. Questions of Atomic Science and Technology, 4, 150–154 (in Russ..).

Artemov, A.V., Kulygin, V.M., Pereslavtsev, A.V. (2011). Multiphase catalysis using metal nanoparticles obtained by electric discharge in a liquid. Catalysis in industry, 5, 34a–44 (in Russ.).

Pat. 2437741, Russian Federation, 2011.

Pat. 2430999, Russian Federation, 2011.

Artemov, A.V., Brykin, A.V., Arsenyeva, D.Yu. (2015). Kinetic regularities of impregnation of inorganic carriers with nanodispersions of metals in the liquid phase (sols) in the process of obtaining deposited metal catalysts. Catalysis in Industry, 15(5), 11–12 (in Russ.).

Pat. 153579, Russian Federation, 2015.

Brykin, A.V., Artemov, A.V., Kolegov, K.A. (2013). Analysis of the market of rare earth metals (REM) and REM. Catalysts in industry.. 4, 1–5 (in Russ..).

Dedov, A.G., Loktev, A.S., Mazo, G.N. (2015). Highly efficient catalytic materials for carbon dioxide conversion of methane. Reports of the Academy of Sciences, 462(1), 58–62. (in Russ.).

Dedov, A.G., Shlyakhtin, O.A., Loktev, A.S. (2017). New catalysts for carbon dioxide conversion of methane into synthesis gas. Reports of the Academy of Sciences, 477(4), 425–428 (in Russ.).

Bukharkina, T.V., Gavrilova, N.N., Skudin ,V.V. (2015). Membrane catalytic reactor. Kinetic modeling of the process of carbon dioxide conversion of methane. Catalysis in Industry, 3, 54–59 (in Russ.).

Krylov, O.V. (2007). Industrial methods of hydrogen production. Catalysis in Industry, 2, 13–29 (in Russ.).

Ferreira-Aparicio, H. & Benito, M.J.(2006). Catalysis Reviews, 47. P. 491–588. https://doi.org/10.1080/01614940500364958

Pat. 2325219, Russian Federation, 2008.

Ovchinnikova, V.I. (1977). Production of caprolactam. M.: Chemistry. P. 118 (in Russ.).

Chernyshev, A.K., Gerasimenko, V.I., Sokol, B.A. (2016). Caprolactam: properties, production, application. M. 1, 396 (in Russ.).

Pat. 2350386, Russian Federation, 2009.

Timoshin, E.S., Morozov, L.N., Batanov, A.A. (2020). Single-stage carbon-vapor reforming of natural gas using a reactor with ceramic heating pipes. Chemical Technology, 21(4), 181–185 (in Russ.).

Bukharkina, T.V., Gavrilova, N.N., Skudin, V.V. (2015). Membrane catalytic reactor. Operating modes, kinetic experiment. Catalysis in Industry, 4, 14–21 (in Russ.).

Brykin, A., Artemov, A. Arsenieva, D. (2015). Electrocondensation method of synthesis of silicon, carbon and silicon carbide. Electronics: Science, Technology, Business, 4(144), 74–79 (in Russ.).

Method and device for producing synthesis gas. https://patentscope.wipo.int/search/ru/detail.jsf?docId=WO2012112065 (accessed 07.08.2022).

Pat. 2314870, Russian Federation, 2008.

Dubrovsky, A.R., Kuznetsov, S.A., Ryabov, E.V. (2011). New generation catalysts and microstructured reactors-heat exchangers for steam conversion of carbon monoxide. Russian Chemical Journal, 55(2), 43–51 (in Russ.).

Burke, L.D. & Nugent P.F. (1998). Gold Bull., 31, P.39.

Lei, Y., Cant, N.W., Trimm, D. L. (2005). Kinetics of the water-gas shift reaction over a rhodium-promoted iron-chromium oxide catalyst. Chem. Eng. J, 114, P. 81–85.

Liu, Q., Ma W., He, R., Mu, Z. (2005). Reaction and characterization studies of industrial Cr-free iron-based catalyst for high-temperature water gas shift reaction. Catal. Today, 106, P. 52–56

Iida, H. & Igarashi, A. Difference in the reaction behavior between Pt–Re/TiO2 (Rutile) and Pt–Re/ZrO2 catalysts for low-temperature water gas shift reactions (2006). Appl. Catal. 303, 48–55. https://doi.org/10.1016/j.apcata.2006.01.029.

Patt, J., Moon, D.J., Phillips, C., Thompson, L. (2000). Molybdenum Carbide Catalysts for Water-Gas Shift. Catal. Lett, 65, P. 193–195.

Krylov, O.V. (2004). Heterogeneous catalysis in industry. M.: Akademkniga (in Russ.).

Pat. 2282496, Russian Federation, 2008.

Batenin, V.M., Maslennikov, V.M., Shterenberg, V.Ya. (2018). A highly efficient energy technology complex for the use of natural gas for the production of electricity, heat and synthetic liquid fuel with partial sequestration of carbon dioxide emissions into the atmosphere. Reports of the Academy of Sciences, 483(5), 502–505 (in Russ.).

Zhuravlev, I.B., Zaluzhny, A.A., Ptitsyn, P.B. (2021). Technical and economic research (TEI) on the topic of the priority direction of scientific and technical development "Hydrogen energy". M.: CAIR, private institution "Science and Innovation" (in Russ.).

Dubinin, A.M., Kagarmanov, G.R., Fink, A.V. (2009). Energy efficiency of a number of methods for producing hydrogen. News of higher educational institutions. Series: Chemistry and Chemical Technology, 52(2), 54–56 (in Russ.).

Strategic session on the development of hydrogen energy in Russia. http://government.ru/news/43558/. (accessed 07.08.2022).

Published
2022-12-11
How to Cite
Artemov, A. V., Dyubanov, M. V., Sedlyarov, O. I., Pereslavtsev, A. V., & Voshchinin, S. A. (2022). Processing of spent mercury-containing ion-exchange resins. II. Hydrogen generation . Chemical Safety Science, 6(2), 171 - 186. https://doi.org/10.25514/CHS.2022.2.23011
Section
Utilization and biodegradation of wastes