Modern approaches to the development of efficient systems of SiO2-CaO bioglasses doped with iron(III) and zinc(II) compounds

Keywords: SiO2, CaO, ZnO, Fe2O3, non-catalytic hydrothermal sol-gel synthesis, bioglass

Abstract

Abstract – The results of a comparative assessment of the synthesis conditions, physicochemical characteristics, and bioactivity of glassy systems of the form 60SiO2–(40–x)CaO–xFe2O3 (x = 0, 1, 3, 5% mol.) and 70SiO2–(30–x)CaO– xZnO (x = 1, 3, 5% mol.). It has been established that the sintering temperature for obtaining zinc-containing powders is 700°C; for iron-containing powders – 750°C. It was found that the content of Fe2O3 and ZnO affects the amorphous nature of glassy iron- and zinc-containing systems. Iron-containing systems are amorphous when Fe2O3 is doped in an amount x = 0 and 1 mol.%; zinc-containing - with ZnO doping in the amount of x = 1, 3, 5% mol. It has been shown that iron- and zinc-containing systems are bioglasses (BG) and their bioactivity is confirmed by the presence of peaks of mineral layers of hydroxyapatite at 2θ = 26° (002), 32° (211) in the X-ray diffraction spectra after keeping the samples in the SBF solution. With an increase in the content of Fe2O3 or ZnO from 0÷1% mol. to 5% mol., the bioactivity decreases, which is confirmed by the decrease or disappearance of one of the peaks of hydroxyapatite in the systems 60Si37Ca3Fe, 70Si35Ca5Zn. The most active formation of hydroxyapatite layers is observed for 60Si39Ca1Fe, 70Si39Ca1Zn. The results of studies of magnetic, thermal, and textural properties show that Fe (III) and Zn (II) ions are vitreous network modifiers, replacing calcium and silicon ions in it. It was found that the addition of Fe (III) ions induces the magnetic properties of systems while maintaining their bioactivity. The magnetic properties increase with increasing Fe2O3 content. An increase in the content of ZnO from 1 to 5% mol. in systems causes a decrease in the phase transition temperature and causes a decrease in porosity. The addition of ions of the above elements gives BG useful properties, while BG dissolves in the body without a trace, without forming toxic chemical compounds.

References

Román, J., Padilla, S., & Vallet-Regí, M. (2003). Sol-Gel Glasses as Precursors of Bioactive Glass Ceramics. Chemistry Materials, 15 (3). 798–806. https://doi.org/10.1021/cm021325c.

Martínez, A., Izquierdo-Barba, I., & Vallet-Regí M. (2000). Bioactivity of a CaO−SiO2 Binary Glasses System. Chem. Mater., 12 (10), 3080–3088. https://doi.org/10.1021/cm001107o.

Juhasz, J.A., & Best, S. M. (2012). Bioactive ceramics: processing, structures and properties. Journal of Materials Science, 47 (2), 610–624.

Goh, Y.F., Alshemary, A. Z., Akram, M., & Kadir, M.R.A. (2012). In vitro Study of Nano-Sized Zinc Doped Bioactive Glass. Materials Chemistry and Physics, 137(3), 1031–1038. http://dx.doi.org/10.1016/j.matchemphys.2012.11.022.

Courthéoux, L., Lao, J., Nedelec, J.-M., & Jallot, E. (2008). Controlled Bioactivity in Zn-doped sol-gel derived SiO2-CaO bioactive glasses. Journal of Physical Chemistry, 112(35), 13663–13667.

Balasubramanian, P., Strobel, L.A., Kneser, U., & Boccaccini, A.R. (2015). Zinc-containing bioactive glasses for bone regeneration, dental and orthopedic applications. Biomedical glasses, 1(1), 51–69. https://doi.org/10.1515/bglass-2015-0006.

Baino, F., Fiume, E., Miola, M., Leone, F., Onida, B., Laviano, F., Gerbaldo, R., Verné, E. (2018). Fe-Doped Sol-Gel Glasses and Glass-Ceramics for Magnetic Hyperthermia. Materials (Basel), 11(1), 173–188. https://doi.org/10.3390/ma11010173.

Baino, F., Fiume, E., Miola, M., Leone, F., Onida, B., & Verné, E. (2019). F. Fe-doped bioactive glass-derived scaffolds produced by sol-gel foaming. Materials Letters, 235, 207‒211. https://doi.org/10.1016/j.matlet.2018.10.042.

Sepulveda, P., Jones, J.R., & Hench, L.L. (2001). Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses. J. Biomed. Mater. Res, 58(6), 734–740. https://doi.org/10.1002/jbm.10026.

Julian, R.J. (2013). Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 9, 4457–4486. https://doi.org/10.1016/j.actbio.2012.08.023.

Gutowska, I., Machoy, Z., & Machalinski, B. (2005). The role of bivalent metals in hydroxyapatite structures as revealed by molecular modeling with the Hyper Chem software. Journal of Biomedical Materials Research. Part A, 75(4), 788–793. https://doi.org/10.1002/jbm.a.30511.

Camargo, N.H.A., Delima, S.A., Souza, J.C.P., Aguiar, J.F., Meier, M.M., & Cardoso, V.E.S. (2009). Synthesis and Characterization of Nanostructured Ceramic Powders of Calcium Phosphate and Hydroxyapatite for Dental Applications. Key Engineering Materials, 398, 619–622. https://doi.org/10.4028/www.scientific.net/KEM.396-398.619.

Hench, L.L. (1975). Characterization of glass corrosion and durability. Journal of Non-Crystalline Solids, 19, 27–39. https://doi.org/10.1016/S0022-3093(02)01864-1.

Hench, L.L., Splinter, R. J., Allen, W. C., & Greenlee, T. K. (1971). Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 5 (6), 117–141.

Bui, X.V., & Dang, T.H. (2019). Bioactive glass 58S prepared using an innovation sol-gel process. Processing and Application of Ceramics, 13 (1), 98–103. https://doi.org/10.2298/PAC1901098B.

Bui X.V. (2019). Evaluating Formation and Bioactivity of New Sol-gel Bioactive Glass. VNU Journal of Science: Natural Sciences and Technology, 35 (1), 68–75. https://doi.org/10.25073/2588-1140/vnunst.4832.

Saravanapavan, P., & Hench, L.L. (2003). Mesoporous calcium silicate glasses. I. Synthesis. Journal of Non-Crystalline Solids, 318 (1–2), 1–13. https://doi.org/10.1016/S0022-3093(02)01864-1.

Dang, T.H., Bui, T.H., Guseva, E. V., Ta, A. T., Nguyen, A.T., Hoang, T.T.H., Bui, X.V. (2020). Characterization of Bioactive Glass Synthesized by Sol-Gel Process in Hot Water. Crystals, 10(6), 529–539. https://doi.org/10.3390/cryst10060529.

Bui, T.H., Hoang, H.T.T., Nguyen, A.T., Nguyen, H.D.Kh., Guseva, E.V., Ta, A.T., & Bui,X.V. (2020). Green synthesis of bioactive glass 70SiO2-30CaO by hydrothermal method. Materials Letters, 274(11), 128032–128041. https://doi.org/10.1016/j.matlet.2020.128032.

Ta, A.T., Buy S.V., & Guseva E.V. (2020). Synthesis of magnetic bioactive glasses 60SiO2-(40-x)CaO-Fe2O3 by acid – free hydrothermal method. Vestnik Technologicheskogo universiteta, 23(11), 73–77. EDN: XWKSZF.

Ta, A.T., Guseva, E.V., Le, H.P., Nguyen, Q.H., Nguyen, V.L., & Bui, X.V. (2020). Acid-free hydrothermal process for synthesis of bioactive glasses 70SiO2-(30-x)CaO-xZnO (x=1, 3, 5 mol.%). Materials of the 2 International Online Conference Crystals session MDPI «Crystalline Minerals and Biominerals»: MDPI, 62(6), 1–12. https://www.mdpi.com/2504-3900/62/1/6.

Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity. Biomaterials, 24, 2907–2915. DOI: 10.1016/j.biomaterials.2006.01.017.

Min, Y., Elisa, F., Enrica, V., Theo, S., Mike, J.R., Francesco B. (2018) Bioactive sol-gel glass-coated wood-derived biocarbon scaffolds. Materials Letters, 232, 14–17. https://doi.org/10.1016/j.matlet.2018.08.067.

Lansdown, A.B.G., Mirastschijski, U., Stubbs, N., Scanlon, E., & Agren, M.S. (2007) .Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair and Regeneration, 15(1), 2–16. https://doi.org/10.1111/j.1524-475X.2006.00179.x.

El-Kady, A.M., & Ali, A.F. (2012). Fabrication and characterization of ZnO modified bioactive glass nanoparticles. Ceramics International, 38(2), 1195–1204. https://doi.org/10.1016/j.ceramint.2011.07.069.

Zhu, M., Zhang, J., Zhou, Y., Liu, Y., He, X., Tao, C., & Zhu, Y. (2013). Preparation and Characterization of Magnetic Mesoporous Bioactive Glass/Carbon Composite Scaffolds. Journal of Chemistry, 893479–893489. https://doi.org/10.1155/2013/893479.

Wu, C., & Chang, J. (2012). Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application. Interface Focus, 2, 292–306. https://doi.org/10.1098/rsfs.2011.0121

Xynos, I.D., Hukkanen, M.V.J., Batten, J.J., Buttery, L.D., Hench, L.L., & Polak, J.M. (2000). Bioglass 45S5 Stimulates Osteoblast Turnover and Enhances Bone Formation In Vitro: Implications and Applications for Bone Tisue Engineering. Calcified Tissue International, 67, 321–329. https://doi.org/10.1007/s002230001134.

Hench, L.L. (2006).The story of Bioglass. Journal of Materials Science: Materials in Medicine, 17(11), 967–978. https://doi.org/10.1007/s10856-006-0432-z.

Yadav, V.S., Narula, S.C., Sharma, R.K., & Tewari, S. (2011). Clinical evaluation of guided tissue regeneration combined with autogenous bone or autogenous bone mixed with bioactive glass in intrabony defects. Journal of Oral Science, 53(4), 481–488. https://doi.org/10.2334/josnusd.53.481.

Owens, G.J., Singh, R.K., Foroutan, F., Alqaysi, M., Cheol-Min, H., Mahapatra, C., Hae-Won, K., & Knowles, J.C. (2016). Sol-gel based materials for biomedical applications. Progress in Materials Science, 77, 1–79. https://doi.org/10.1016/j.pmatsci.2015.12.001.

Xia, W., & Chang, J.J. (2007). Preparation and characterization of nano-bioactiveglasses (NBG) by a quick alkali-mediated (sol-gel) method. Materials Letters, 61, 3251–3253. https://doi.org/10.1016/j.matlet.2006.11.048.

Oudadesse, H., Dietrich, E., Gal, Y.L., Pellen, P., Bureau, B., Mostafa, A.A., & Cathelineau, G. (2011). Apatite forming ability and cytocompatibility of pure and Zn-doped bioactive glasses. Biomedical Materials, 6(3), 035006–035014. https://doi.org/10.1088/1748-6041/6/3/035006.

Published
2023-06-05
How to Cite
Guseva, E. V., Ta, A. T., Xuan Vuong Bui, X. V., & Fesik, E. V. (2023). Modern approaches to the development of efficient systems of SiO2-CaO bioglasses doped with iron(III) and zinc(II) compounds. Chemical Safety Science, 7(1), 8 - 23. https://doi.org/10.25514/CHS.2023.1.24001
Section
Materials with new functional properties