Bioactive glassy systems of the SiO2-CaO-P2O5 type doped with zinc(II) and manganese(II) compounds: efficient synthesis and properties

Keywords: SiO2, CaO, P2O5, ZnO, MnO, non-catalytic hydrothermal sol-gel synthesis, bioglass

Abstract

The results of a comparative assessment of the synthesis conditions, physicochemical characteristics, and bioactivity of glassy systems of the form 60SiO2 – (36–x)CaO – 4P2O5 – xZnO (x = 1, 3, 5% mol.), 70SiO2 – (26–x)CaO – 4P2O5 – xMnO (x = 0, 3, 5% mol.). It has been established that the sintering temperature for obtaining zinc- and manganese-containing powders is 700°C. It is found that amorphous properties are observed for all synthesized systems 60SiO235CaO4P2O51ZnO, 60SiO233CaO4P2O53ZnO, 60SiO231CaO4P2O55ZnO, 70SiO226CaO4P2O5, 70SiO223CaO4P2O53MnO, 70SiO221CaO4P2O55MnO. It is shown that zinc- and manganese-containing systems are bioglasses. With an increase in the content of ZnO and MnO(II), the bioactivity of the systems decreases. The most active formation of hydroxyapatite layers is observed for 70SiO226CaO4P2O5 and 70SiO223CaO4P2O53MnO. Zinc-containing systems can be arranged according to bioactivity in the following order: 60SiO235CaO4P2O51ZnO > 60SiO233CaO4P2O53ZnO > 60SiO231CaO4P2O55ZnO. The results of studies of textural properties show that Zn(II) ions are vitreous network modifiers at 1÷3% mol., replacing calcium and silicon ions. The presence of phosphorus(V) oxide in the system prevents complete modification and destruction of the vitreous network with an increase in the content of Zn(II) ions up to 5% mol. The influence of MnO oxide additives on thermal properties has been established, which is expressed in a decrease in the phase transition temperature with an increase in the MnO content from 0 to 5% mol. The selection of starting materials and the scheme of the process were carried out using the principles of «green chemistry».

References

Kokubo, T. (2021). Mechanical properties of a new type of glass-ceramic for prosthetic applications. Multiphase Biomedical Materials, 105‒114. https://doi.org/10.1201/9780429087592-7.

Varshneya, A. K. (1994). Fundamentals of Inorganic glasses. Boston: Academic Press.

Hench, L.L. (2006). The story of Bioglass. Journal of Materials Science: Materials in Medicine, 17(11), 967–978. https://doi.org/10.1007/s10856-006-0432-z.

Gutowska, I., Machoy, Z., & Machalinski, B. (2005). The role of bivalent metals in hydroxyapatite structures as revealed by molecular modeling with the Hyper Chem software. Journal of Biomedical Materials Research. Part A, 75(4), 788–793. https://doi.org/10.1002/jbm.a.30511

Camargo, N.H.A., Delima, S.A., Souza, J.C.P., Aguiar, J.F., Meier, M.M., & Cardoso, V.E.S. (2009). Synthesis and Characterization of Nanostructured Ceramic Powders of Calcium Phosphate and Hydroxyapatite for Dental Applications. Key Engineering Materials, 398, 619–622. https://doi.org/10.4028/www.scientific.net/KEM.396-398.619.

Hench, L.L. (1975). Characterization of glass corrosion and durability. Journal of Non-Crystalline Solids, 19, 27–39.

Hench, L.L., Splinter, R. J., Allen, W. C., & Greenlee, T. K. (1971). Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 5(6), 117–141.

Román, J., Padilla, S., & Vallet-Regí, M. (2003). Sol-Gel Glasses as Precursors of Bioactive Glass Ceramics. Chemistry Materials, 15(3). 798–806. https://doi.org/10.1021/cm021325c.

Ma, J., Chen, C.Z., Wang, D.G., Meng, X.G., & Shi, J.Z. (2010). Influence of the sintering temperature on the structural feature and bioactivity of sol-gel derived SiO2-CaO-P2O5 bioglass. Ceramics International, 36(6), 1911–1916.

Juhasz, J.A., Best, S.M. (2012). Bioactive ceramics: processing, structures and properties. Journal of Materials Science, 47(2), 610–624.

Bui, X.V., & Dang, T.H. (2019). Bioactive glass 58S prepared using an innovation sol-gel process. Processing and Application of Ceramics, 13(1), 98–103. https://doi.org/10.2298/PAC1901098B

Bui, X.V. (2019). Evaluating Formation and Bioactivity of New Sol-gel Bioactive Glass. VNU Journal of Science: Natural Sciences and Technology, 35(1), 68–75. https://doi.org/10.25073/2588-1140/vnunst.4832

Ahmadi, S.M., Behnamghader A., & Asfnejaad A. (2017). Sol-gel synthesis, characterization and in vitro evaluation of SiO2-CaO-P2O5 bioactive glass nanoparticles with various CaO/P2O5 ratios. Digest Journal of Nanomaterials and Biostructures, 12 (3). 847–860.

Letaief, N., Lucas-Girot, A., Hassane, O., & Dorbez-Sridi, R. (2014). New 92S6 mesoporous glass: Influence of surfactant carbon chain length on the structure, pore morphology and bioactivity. Materials Research Buleetin, 60, 882–889. DOI: 10.1016/j.materresbull.2014.08.048

Ta, A.T., Guseva, E.V., Nguyen, A.T., Ho, T.D., & Bui, X.V. (2021). Simple and Acid-Free Hydrothermal Synthesis of Bioactive Glass 58SiO2-33CaO-9P2O5 (wt%). Crystals, 11(3), 283–295. https://doi.org/10.3390/cryst11030283

Rocton, N., Oudadesse, H., Mosbahi, S., Bunetel, L., Pellen-Mussi, P., & Lefeuvre, B. (2019). Study of nano bioactive glass for use as bone biomaterial comparison with micro bioactive glass behaviour. Materials Science and Engineering, 628, 1–11. https://doi.org/10.1088/1757-899X/628/1/012005.

Cañaveral, S., Morales, D., & Vargas, A. F. (2019). Synthesis and characterization of a 58S bioglass modified with manganese by a sol-gel route. Materials Letters, 255 (15), 126575–126579. https://doi.org/10.1016/J.MATLET.2019.126575

Bui, T.H., Le, H.P., Nguyen, Q.H., Guseva, E.V., Ta, A.T., Nguyen, A.T., Nguyen, V.L. Nguyen, Ha, T.A., Ravi, P., Mohan, N. Krishna, Vo, T.V., & Bui X. V. (2022). Structure, Morphology and Bioactivity of Bioactive Glasses SiO2-CaO-P2O5 Doped with ZnO Synthesized by Green Synthesis. Glass physics and chemistry, 48 (4), 273-279. https://doi.org/10.1134/S1087659622040058.

Kokubo, T., Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity. Biomaterials, 24, 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017.

Balasubramanian, P., Strobel, L.A., Kneser, U., & Boccaccini A.R. (2015). Zinc-containing bioactive glasses for bone regeneration, dental and orthopedic applications. Biomedical glasses, 1(1), 51–69. https://doi.org/10.1515/bglass-2015-0006

Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso F., Rouquerol J., & Sing K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Journal Pure and Applied Chemistry, 87(9–10), 1052–1069. https://doi.org/10.1515/pac-2014-1117

Xia, W., & Chang, J.J. (2007). Preparation and characterization of nano-bioactiveglasses (NBG) by a quick alkali-mediated (sol-gel) method. Materials Letters, 61, 3251–3253. https://doi.org/10.1016/j.matlet.2006.11.048.

Nawaz, Q., Rehman, M.A.U., Burkovski, A., Schmidt, J., Beltrán, A.M., Shahid, Ameen, Alber, N.K., Peukert, W., & Boccaccini A.R. (2018). Synthesis and characterization of manganese containing mesoporous bioactive glass nanoparticles for biomedical applications. Journal of Materials Science: Materials in Medicine, 29(64), 2053–2066. https://doi.org/10.1007/s10856-018-6070-4

Saravanapavan, P., & Hench, L.L. (2003). Mesoporous calcium silicate glasses. I. Synthesis. Journal of Non-Crystalline Solids, 318(1–2), 1–13. https://doi.org/10.1016/S0022-3093(02)01864-1.

Bejarano, J. , Caviedes, P., & Palzal, H. (2015). Sol–gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics. Biomed. Mater., 10(2), 025001–025013. https://doi.org/10.1088/1748-6041/10/2/025001

Atkinson, I., Anghel, E.M., Predoana, L., Mocioiu, O.C., Jecu, L., Raut, I., Munteanu, C., Culita, D., & Zaharescu, M. (2016). Influence of ZnO addition on the structural, in vitro behavior and antimicrobial activity of sol– gel derived CaO-P2O5-SiO2 bioactive glasses. Ceramics International, 42(2), P. 3033–3045. http://dx.doi.org/10.1016%2Fj.ceramint.2015.10.090

Published
2023-06-05
How to Cite
Guseva, E. V., Ta, A. T., Bui, X. V., & Fesik, E. V. (2023). Bioactive glassy systems of the SiO2-CaO-P2O5 type doped with zinc(II) and manganese(II) compounds: efficient synthesis and properties. Chemical Safety Science, 7(1), 24 - 38. https://doi.org/10.25514/CHS.2023.1.24002
Section
Materials with new functional properties