Mathematical Models for Designing Composite Materials with Barrier Properties

  • V. K. Gorelenkov Scientific Research Institute of Elastomeric Materials and Articles, LLC (NIIEMI), Moscow, Russia
Keywords: extremely hazardous and highly hazardous substances, polymer and composite protective materials, barrier properties, heat and mass transfer, mathematical modeling.

Abstract

One of the most urgent tasks of ensuring chemical safety is the development and improvement of personal protective equipment required for the work of the staff of chemically hazardous facilities and emergency rescue units of the Ministry of Emergencies. Modern personal equipment for protection against hazardous substances is based on multilayer polymer composite materials with barrier properties. The relevance of mathematical modeling of heat and mass transfer processes used for designing these products and materials is justified, taking into account a wide range of toxic and aggressive environments and thermal factors of different types and origin. The article provides an overview of mathematical models describing heat and mass transfer through polymeric (including composite-based) materials, heat-protective coatings, absorbing systems, etc. A series of developed to date techniques for solving the appropriate equations are summarized, which have been successfully used in related engineering fields and can be recommended for designing novel protective materials and coatings for the corresponding purpose.

References

State report “On the state of protection of the population and territories of the Russian Federation from natural and man-made emergencies in 2018”. М.: Ministry of Emergency Situations of Russia, 2019. 344 p. [in Russian]. http://docs.cntd.ru/document/902181800 (accessed: 20.11.2019).

Barrer R.M. Transient flow of gases in sorbents providing uniform capillary networks of molecular dimensions // Trans. Faraday Soc. 1949. V. 45. P. 358. DOI: https://doi.org/10.1039/TF9494500358.

Crank J. The Mathematic of Diffusion. Oxford: Clarendon Press, 1956. 384 p.

Lykov A.V., Mikhailov Yu.A. Theory of heat and mass transfer. М.: Gosenergoizdat, 1963. 535 p. [in Russian].

Grinberg G.A. // Journal of Applied Mathematics and Mechanics. 1967. V. 31. No. 2. P. 393 [in Russian].

Lyubov B.Ya., Kartashov E.M. // Izvestiya vuzov. Ser. Fizika [Soviet physics journal]. 1970. No. 12. P. 97 [in Russian].

Hwang S.T., Kammermeyer K. Membranes in Separation Techniques of Chemistry. N.Y.: Wiley Interscience, 1975.

Sherwood T.K., Pigford R.L., Wilke C.R. Mass transfer. N.Y.: McGraw-Hill Inc., 1975.

Lyubov B.Ya., Yalovoy N.N. // Journal of Engineering Physics and Thermophysics. 1959. V. 17. No. 4. P. 679 [in Russian].

Zubov L.I. et al. // Vysokomol. soed. Ser. А [Polymer Science. Series A]. 1980. V. 22. No. 6. P. 1347 [in Russian].

Rudobashta S.P., Kartashov E.M. Diffusion in chemical engineering processes. М.: Khimiya, 1993. 208 p. [in Russian].

Stepanov R.D., Shlenskii O.F. Strength calculations for plastic constructions working in liquid media. М.: Mashinostroyeniye, 1981. 136 p. [in Russian].

Chalykh A.E. Diffusion in polymer systems. М.: Khimiya, 1987. 321 p. [in Russian].

Kartashov E.M. Analytical methods in the theory of thermal conductivity of solids. Manual. 2 Ed. М.: Vysshaya shkola, 1985. 480 p. [in Russian].

Kartashov E.M. // Izvestiya AN SSSR. Ser. Energy eng. and transport [Thermal Engineering].1986. No. 6. P. 116 [in Russian].

Kartashov E.M. // Journal of Engineering Physics and Thermophysics. 2012. V. 85. No. 5. P. 1 [in Russian].

Bogdanova L.M., Irzhak V.I., Rozenberg B.A. // Vysokomol. soed. Ser. А [Polymer Science. Series A]. 1986. V. 28. No. 7. P. 1518 [in Russian].

Astarita G. Mass transfer with chemical reaction. Amsterdam, London: Elsevier, 1967.

Moiseev Yu.V., Zaikov G.E. Chemical stability of polymers in aggressive media. М.: Khimiya, 1979. 287 p. [in Russian].

Zaikov G.E., Iordanskiy A.L., Markelov V.S. Diffusion of electrolytes in polymers. М.: Химия, 1984. 240 p. [in Russian].

Lykov A.V. // Izvestiya AN SSSR. Ser. Energy eng. and transport [Thermal Engineering]. 1969. No. 2. P. 3 [in Russian].

Peterlin A.J. // Separ. Sci. Technol. 1979. V. 14. No. 9. P. 239.

Crank J. The Mathematics of Diffusion. 2nd Ed. London: Oxford University Press, 1985.

Lykov A.V. // Journal of Engineering Physics and Thermophysics. 1965. V. 9. No. 3. P. 287 [in Russian].

Soloviev I.A. // Journal of Engineering Physics and Thermophysics. 1981. V. 40. No. 2. P. 373 [in Russian].

Kudinov V.A., Kudinov I.V. // High Temperature. 2013. V. 51. P. 268. DOI: 10.1134/S0018151X1204013X.

Kosenko R.Yu., Iordanskiy A.L., Zaikov G.E. // Vysokomol. soed. Ser. А [Polymer Science. Series A]. 1986. V. 28. No. 4. P. 878 [in Russian].

Polyshchuk A.I. et al. // Vysokomol. soed. Ser. А [Polymer Science. Series A]. 1988. V. 30. No. 5. P. 1023 [in Russian].

Kartashov E.M. Analytical methods in the theory of thermal conductivity of solids. М.: Vysshaya shkola, 2001. 540 p. [in Russian].

Kartashov E.M. // Journal of Engineering Physics and Thermophysics 2001. V. 74. No. 2. P. 171 [in Russian].

Kudinov V.A., Kartashov E.M., Kalashnikov V.V. Analytical solutions to the problems of heat and mass transfer and thermoelasticity for multilayer structures. М.: Vysshaya shkola, 2005. 432 p. [in Russian].

Rudobashta S.P., Kartashov E.M. Diffusion in chemical engineering processes. М.: Kolos, 2010. 480 p. [in Russian].

Kartashov E.M. Extended abstract of doctor. sci. (Phys. And Math..) dissertation. L., 1982 [in Russian].

Troitskiy G.V. In.: Electrophoretic methods of protein analysis. Novosibirsk: Nauka, 1981. P. 10 [in Russian].

Trofimov N.I., Kanovich M.Z., Kartashov E.M et al. Physics of composites. М.: Mir, 2005. V. 1. 456 p. [in Russian].

Kartashov E.M., Bartenev G.M. Dynamic effects in solids under conditions of interaction with intense energy flows. // Itogi nauki i tekhniki. Ser. Khimiya i tekhn. vysokomol. soed. [Sci. techn. findings. Ser. Polymers]. М.: VINITI,1988. V. 25. P. 3. [in Russian].

Kartasov E.M., Remizov O.I. // Izvestiya vuzov. Ser. Energetika [Bulletin of higher ed. inst. Ser. Energ. Eng.]. 2004. No. 1. P. 62 [in Russian].

Manin V.N., Gromov A.H. Physico-chemical resistance of polymeric materials under operating conditions. L.: Khimiya, 1980. 248 p. [in Russian].

Kudinov V.A., Kudinov I.V. // Journal of Engineering Physics and Thermophysics. 2011. V. 84. No. 5. P. 1065 [in Russian].

Aleksashenko A.A., Komarov Yu.A., Molchadskii I.S. Heat and mass transfer in fire conditions. М.: Stroiizdat, 1982.175 p. [in Russian].

Kartashov E.M., Krotov G.S. // Mathematical modeling. 2008. V. 29. No. 3. P. 77 [in Russian].

Kokotov Yu.A., Zolotarev P.P., El’kin G.E. Theoretical basis of ion exchange. Complex ion exchange systems. L.: Khimiya, 1986. 280 p. [in Russian].

Vasenin R.M. // Vysokomol. soed. [Polymer Science].1960. V. 2. No. 8. P. 857 [in Russian].

Timofeev D.P. Kinetics of adsorption. М.: Izd. AN SSSR, 1962 [in Russian].

Long F.A., Richman D. Concentration Gradients for Diffusion of Vapors in Glassy Polymers and their Relation to Time Dependent Diffusion Phenomena // J. Am. Chem. Soc. 1960. V. 82. No. 3. P. 513. DOI: https://doi.org/10.1021/ja01488a002.

Kishimoto A., Kitahara T. Differential permeation and absorption. J. Polym. Sci. P. A-1. Polym Chem. 1967. V. 5. No. 8. P. 2147. DOI: https://doi.org/10.1002/pol.1967.150050830.

Derachits N.A. // Proceedings of 5 All-Union Meeting Carbon sorbents and their application in industry. Perm, 1991 [in Russian].

Nikolaev N.I. Diffusion in membranes. М.: Khimiya, 1980. 232 p. [in Russian].

Raichenko A.I. Mathematical theory of diffusion in applications. Kiev: Naukova dumka, 1981. 395 p. [in Russian].

Popov A.M. et al. In: Issues of combustion and quenching of polymeric materials in oxygen-enriched materials. Issue 2. М.: VNIIPO, 1977 [in Russian].

Sergeev G.G. Foundations of heat and mass transfer in reactive media. Minsk: Nauka i tekhnika, 1977. 232 p. [in Russian].

Kartashov E.M., Parton V.Z. Dynamic thermoelasticity and thermal shock problems // Itogi nauki i tekhniki. Ser. mekh. deform. tv. tela. [Sci. techn. findings. Ser. Mechanics deform. solids]. М.: VINITI, 1991. V. 22. P. 55 [in Russian].

Chalykh A.E., Babaevskii P.G. Porous polymeric materials. Structure, hygroscopicity, permeability. М.: Legk. pishch. prom., 1982. 35 p. [in Russian].

Reitlinger S.A. Permeability of polymeric materials. М.: Khimiya, 1974. 268 p. [in Russian].

Published
2019-12-29
How to Cite
Gorelenkov, V. K. (2019). Mathematical Models for Designing Composite Materials with Barrier Properties. Chemical Safety Science, 3(2), 20 - 36. https://doi.org/10.25514/CHS.2019.2.16011
Section
Simulation of chemical and ecological processes