Application of magnetic molecular imprinted polymers for on-line dynamic concentration of 2,4-dichlorophenoxyacetic acid and its subsequent determination in soil

Keywords: on-line dynamic concentration, 2,4-dichlorophenoxyacetic acid, molecularly imprinted polymers, magnetic nanoparticles, N-vinylpirrolidon, N-vinylamide, determination, soil, chernozem.

Abstract

A method of dynamic on-line concentration of the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) using molecular imprinted magnetic sorbents modified with N-vinylcaprolactame or N-vinylpyrrolidone is proposed. For this purpose, a cartridge (volume of 5 cm3) with a sorbent immobilized on the walls and a stirrer made of polymer material was used. The best results were obtained using molecular imprinted polymers based on N-vinylpyrrolidone: the degree of extraction is 95%, the distribution coefficient is 7850, the imprinting factor is 6.3, the concentration coefficient is 1025. The method was used to determine 2,4-D in soils (typical chernozem and leached chernozem) after alkaline extraction (aqueous NaOH solution, pH 12). The alkaline solution was acidified with hydrochloric acid (pH 2) and 100 ml of this solution was passed through a concentrating element. The determination of 2,4-D was carried out by gas chromatography-mass spectrometry in the form of methyl esters. The detection limit of 2.4-D in soil is 0.1 μg/kg. The distribution of 2,4-D concentrations over the soil profile was studied for 56 days after the introduction of the drug into the soil. A day after the application of the pesticide, the maximum concentrations of 2,4-D in the surface layer were 105 – 109 μg/kg. It was found that the rate of degradation of the pesticide accelerates on the 14th day after application. By the end of the observation period, the concentrations of 2,4-D in the soil were 3-7 μg/kg. The penetration depth of the detected concentrations was 80 cm. Precipitation has the greatest impact on the progress of 2,4-D along the soil profile.

References

Dargahi, A., Shokoohi, R., Asgari, G., Ansari, A., Nematollahi, D., & Samarghandi, M.R. (2021). Moving-bed biofilm reactor combined with three-dimensional electrochemical pretreatment (MBBR–3DE) for 2,4-D herbicide treatment: application for real wastewater, improvement of biodegradability. RSC Advances, 11(16), 9608–9620. https://doi.org/10.1039/d0ra10821a

Da Silva, A.P., Morais, E.R., Oliveira, E.C., & Ghisi, N. de C. (2022). Does exposure to environmental 2,4-dichlorophenoxyacetic acid concentrations increase mortality rate in animals? A meta-analytic review. Environmental Pollution, 303, 119179. https://doi.org/10.1016/j.envpol.2022.119179

Ha, D.D. (2018). Anaerobic degradation of 2,4-dichlorophenoxyacetic acid by Thauera sp. DKT. Biodegradation, 29(5), 499–510. https://doi.org/10.1007/s10532-018-9848- 7

Islam, F., Wang, J., Farooq, M.A., Khan, M.S.S., Xu, L., Zhu, J., Zhao, M., Muños, S., Li, Q.X., & Zhou, W. (2018). Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Environment International, 111, 332–351. https://doi.org/10.1016/j.envint.2017.10.020.

Chu, W., Gao, N., Li, C., & Cui, J. (2009). Photochemical degradation of typical halogenated herbicide 2,4-D in drinking water with UV/H2O2/micro-aeration. Sci. China Ser.B- Chem., 52(12), 2351–2357. https://doi.org/10.1007/s11426-009-0132-x

Deokar, S.K., & Mandavgane, S.A. (2015). Rice husk ash for fast removal of 2,4-dichlorophen-oxyacetic acid from aqueous solution. Adsorpt. Sci. Technol., 33(5), 429–440. https://doi.org/10.1260/0263-6174.33.5.429.

Luo, H., Zhou, X., Chen, Q., & Zhou, J. (2021). Removal of 2,4-dichlorophenoxyacetic acid by the boron-nitrogen co-doped carbon nanotubes: Insights into peroxymonosulfate adsorption and activation. Separ. Purif. Technol., 259, 118196. https://doi.org/10.1016/j.seppur.2020.118196

Kuśmierek, K., Szala, M., & Świątkowski, A. (2016). Adsorption of 2,4-dichlorophenol and 2,4-dichlorophenoxyacetic acid from aqueous solutions on carbonaceous materials obtained by combustion synthesis. J. Taiwan Inst. Chem. Eng., 63, 371–378. https://doi.org/10.1016/j.jtice.2016.03.036

Momčilović, M.Z., Ranđelović, M.S., Zarubica, A.R., Onjia, A.E., Kokunešoski, M., & Matović, B.Z. (2013). SBA-15 templated mesoporous carbons for 2,4-dichlorophenoxyacetic acid removal. Chem. Eng. J., 220, 276–283. https://doi.org/10.1016/j.cej.2012.12.024.

Yang, X., Chen, J., Liu, H., Li, X., & Zhong S. (2019). Molecularly imprinted polymers based on zeolite imidazolate framework-8 for selective removal of 2,4-dichlorophenoxyacetic acid. Colloids Surf. A Physicochem. Eng. Asp., 570, 244–250. https://doi.org/10.1016/j.colsurfa.2019.03.038

Wu, G., Ma, J., Li, S., Wang, S., Jiang, B., Luo, S., Li, J., Wang, X., Guan, Y., & Chen, L. (2020). Cationic metal-organic frameworks as an efficient adsorbent for the removal of 2,4-dichlorophenoxyacetic acid from aqueous solutions. Environmental Research, 186, 109542. https://doi.org/10.1016/j.envres.2020.109542

Zhong, S., Zhou, C., Zhang, X., Zhou, H., Li, H., Zhu, X., & Wang, Y. (2014). A novel molecularly imprinted material based on magnetic halloysite nanotubes for rapid enrichment of 2,4-dichlorophenoxyacetic acid in water. J. Hazard. Mater., 276, 58–65. https://doi.org/10.1016/j.jhazmat.2014.05.013

Liu, Y., He, Y., Jin, Y., Huang, Y., Liu, G., & Zhao, R. (2014). Preparation of monodispersed macroporous core–shell molecularly imprinted particles and their application in the determination of 2,4-dichlorophenoxyacetic acid. J. Chromatog. A, 1323, 11–17. https://doi.org/10.1016/j.chroma.2013.11.002

Han, D., Jia W., & Liang, H. (2010). Selective removal of 2,4-dichlorophenoxyacetic acid from water by molecularly-imprinted amino-functionalized silica gel sorbent. J. Environ. Sci., 22(2), 237–241. https://doi.org/10.1016/s1001-0742(09)60099-1

Sheng, L., Jin, Y., He, Y., Huang, Y., Yan, L., & Zhao, R. (2017). Well-defined magnetic surface imprinted nanoparticles for selective enrichment of 2,4-dichlorophenoxyacetic acid in real samples. Talanta, 174, 725–732. https://doi.org/10.1016/j.talanta.2017.07.002

Buerge, I.J., Pavlova, P., Hanke, I., Bächli, A., & Poiger, T. (2020). Degradation and sorption of the herbicides 2,4-D and quizalofop-P-ethyl and their metabolites in soils from railway tracks. Environ. Sci. Eur., 32(1), 150. https://doi.org/10.1186/s12302-020-00422-6

Hiller, E., Krascsenits, Z., & Čerňanský, S. (2008). Sorption of acetochlor, atrazine, 2,4-D, chlorotoluron, MCPA, and trifluralin in six soils from Slovakia. Bull. Environ. Contam. Toxicol., 80(5), 412–416. https://doi.org/10.1007/s00128-008-9430-9

Spuler, M.J., Briceño, G., Duprat, F., Jorquera, M., Céspedes, C., & Palma, G. (2019). Sorption kinetics of 2,4-D and diuron herbicides in a urea-fertilized andisol. J. Soil. Sci. Plant Nutr., 19(2), 313–320. https://doi.org/10.1007/s42729-019-00031-0

Laganà, A., Bacaloni, A., De Leva, I., Faberi, A., Fago, G., & Marino, A. (2002). Determination of maize and grain herbicides and their transformation products in soil by use of soil column extraction then liquid chromatography with tandem mass spectrometry. Chromatographia, 56(5–6), 337–343. https://doi.org/10.1007/bf02491942

Yeh, M.-K., Lin, S.-L., Leong, M.-I., Huang, S.-D., & Fuh, M.-R. (2011). Determination of phenoxyacetic acids and chlorophenols in aqueous samples by dynamic liquid-liquid-liquid microextraction with ion-pair liquid chromatography. Anal. Sci., 27(1), 49–54. https://doi.org/10.2116/analsci.27.49

Farhadi, K., Matin, A.A., & Hashemi, P. (2008). LC Determination of Trace Amounts of Phenoxyacetic Acid Herbicides in Water after Dispersive Liquid–Liquid Microextraction. Chromatographia, 69(1–2), 45–49. https://doi.org/10.1365/s10337-008-0815-z

Ahmed, S.F., Mofijur, M., Parisa, T.A., Islam, N., Kusumo, F., Inayat, A., Le, V.G., Badruddin, I.A., Khan, T.M.Y., & Ong, H.C. (2022). Progress and challenges of contaminate removal from wastewater using microalgae biomass. Chemosphere, 286, 131656.https://doi.org/10.1016/j.chemosphere.2021.131656

Ri, H.-C., Jon, C.-S., Lu, L., Piao, X., & Li, D. (2023). A dynamic electromagnetic field assisted boronic acid-modified magnetic adsorbent on-line extraction of cis-diol-containing flavonoids from onion sample. J. Food Compost. Anal., 105279.https://doi.org/10.1016/j.jfca.2023.105279

Amini, S., Ebrahimzadeh, H., Seidi, S., & Jalilian, N. (2021). Application of electrospun polyacrylonitrile/Zn-MOF-74@GO nanocomposite as the sorbent for online micro solid-phase extraction of chlorobenzenes in water, soil, and food samples prior to liquid chromatography analysis. Food Chem., 363, 130330. https://doi.org/10.1016/j.foodchem.2021.130330

Liew, C.S.M., Lee, & H.K. (2022). Online water sampling-quickMix-assisted miniscale liquid-liquid extraction coupled with full evaporation dynamic headspace concentration of polybrominated diphenyl ethers. J. Chromatogr. A, 1673, 463123.https://doi.org/10.1016/j.chroma.2022.463123

Губин А.С., Суханов П.Т., Кушнир А.А., Проскурякова Е.Д. (2018). Применение магнитного сорбента на основе наночастиц Fe3O4 и сверхсшитого полистирола для концентрирования фенолов из водных растворов. Журн. прикл. химии, 91(10), 1431–1440. https://doi.org/10.1134/S1070427218100099

Губин А.С., Суханов П.Т., Санникова Н.Ю, Проскурякова Е.Д., Фролова Ю.С. (2019). Применение молекулярно импринтированного полимера для концентрирования 4-нитрофенола из водных сред. Журн. аналит. химии, 74(7S), 16–23. https://doi.org/10.1134/S1061934819070116

Чурилина Е.В., Суханов П.Т., Ермак С.С., Коренман Я.И., Шаталов Г.В. Новые полимеры на основе N-виниламидов для концентрирования нитрофенолов из водных сред. Журн. аналит. химии, 67(9), 855–859. https://doi.org/10.1134/S1061934812050048

Суханов П.Т., Кушнир А.А. (2019). Сорбция нитрофенолов из водных сред полимерными сорбентами на основе N-винилпирролидона. Вестник Московского университета. Серия 2: Химия, 60(2), 117–123. https://doi.org/10.3103/S0027131419020081

Кушнир А.А., Суханов П.Т., Чурилина Е.В., Шаталов Г.В. (2014). Динамическая сорбция нитрофенолов из водных растворов полимерами на основе N-винилпирролидона. Журн. прикл. химии, 87(5), 589–594. https://doi.org/10.1134/S1070427214050073

Единый государственный реестр почвенных ресурсов России. https://egrpr.esoil.ru/content/1sem.html (дата обращения 30.01.2023 г.).

ПНД Ф 14.1:2:3:4.212-2005. Методика определения 2,4-дихлорфеноксиуксусной кислоты в питьевых, природных и сточных водах методом газовой хроматографии. http://www.omegametall.ru/Index2/1/4293776/4293776021.htm (дата обращения 30.02.2023 г.).

Mudhoo, A., & Sillanpää, M. (2021). Magnetic nanoadsorbents for micropollutant removal in real water treatment: a review. Environ. Chem. Lett., 19, 4393–4413.

https://doi.org/10.1007/s10311-021-01289-6.

Macášek, F., Navratil, J.D., Dulanská, S. (2002). Magnetic sorbent for soil remediation—a waste for waste treatment. Separation Science and Technology, 37(16), 3673–3691. https://doi.org/10.1081/ss-120014826.

Gouma, V., Tziasiou, C., Pournara, A.D., & Giokas, D.L. (2022). A novel approach to sorbent-based remediation of soil impacted by organic micropollutants and heavy metals using granular biochar amendment and magnetic separation. J. Environ. Chem. Eng, 10(2), 107316. https://doi.org/10.1016/j.jece.2022.107316.

Published
2023-06-05
How to Cite
Gubin, A. S., Sukhanov, P. T., & Kushnir, A. A. (2023). Application of magnetic molecular imprinted polymers for on-line dynamic concentration of 2,4-dichlorophenoxyacetic acid and its subsequent determination in soil. Chemical Safety Science, 7(1), 128 - 147. https://doi.org/10.25514/CHS.2023.1.24010
Section
Indication and identification of hazardous substances